Download PDF version

The British Standard (BS) 6164:2019 came into effect on 31 October 2019. This British Standard is a full revision of the now-superseded BS 6164:2011 with regards to health and safety in tunneling in the construction industry. Clause 13 of BS 6164:2019 contains guidance and recommendations regarding fire protection of plant and equipment used in tunneling.

It refers to the protection of both mobile and static equipment, including specialized tunnel plant intended for underground use and surface equipment that can be taken underground. Specialized tunneling plant requiring fire protection includes tunnel boring machines (TBMs), roadheaders, tunnel excavators and dump trucks, locomotives and access platforms amongst other.

spray flammable fluid

Surface plant that can be taken underground comprises earthmoving machinery such as surface excavators and dump trucks, mobile elevating work platforms (MEWPs) and static equipment like concrete/group pumps, transformers, generators and compressors. All these pieces of equipment include fire hazards that can pose a risk of fire. Heat, fuel and oxygen are the three elements a fire needs to ignite. Mobile equipment usually contains large amounts of fuel and is also a source of heat.

Electrical fires can also occur when heat generated by an electrical source encounters a source of fuel

A leak in a diesel or hydraulic line can spray flammable fluid onto hot components, starting a fire. Debris that accumulates around the engine compartment and the belly pan can also ignite when in contact with a heat source. Electrical fires can also occur when heat generated by an electrical source encounters a source of fuel. Fire suppression systems are installed in plant and equipment to protect the operator, equipment and facilities against the risk fire.

Fire Suppression System Design

However, not all systems in the market offer the same level of protection as the design parameters and capabilities vary significantly from system to system. This blog post aims to help anyone with an interest or responsibility for the protection of plant and equipment used in tunneling to understand the key principles behind the current generation of fire suppression systems.

In addition, it examines the main aspects to be considered when choosing a fire suppression system in line with BS 6164:2019. On-board fire suppression systems consist of four major components:

  • A detection system to provide automatic fire detection, usually linear heat detection, spot detectors, infra-red flame detectors, or a combination of the same.
  • An actuation system operated manually and/or automatically.
  • A tank or several tanks to store the suppression agent.
  • An agent distribution network which delivers the agent from the tank through hydraulic hose and fixed nozzles to the fire hazard areas.

Fire suppression systems

Local application systems are recommended for mobile plant such as excavators and dump trucks

If an automatic actuation system is not installed, the system can only be activated manually. Relying purely on a manual system usually leads to a slower reaction to fire. A combination of automatic and manual actuation is recommended to achieve higher levels of reliability. Fire suppression systems are not designed to extinguish all fires, especially when unusual amounts of combustible material are present or in areas that cannot be covered by the system, such as pneumatic types.

It is therefore highly recommended to supplement the fire suppression system with portable hand-held fire extinguishers located on-board the vehicle. Fixed fire suppression systems are designed following a local application or total flooding method. Local application systems are recommended for mobile plant such as excavators and dump trucks.

heavy mobile equipment

When designing a local application system, each individual hazard area is identified through a fire hazard analysis and the quantity of extinguishing agent, number of discharge nozzles and nozzle location is chosen to give proper coverage. Individual hazard protection is key for system efficiency in heavy mobile equipment, where the hazards are not located in an enclosure and air flow can affect the effectiveness of the system.

Total flooding, also referred to as volume protection, is only applied when the fire hazards are located in an enclosed space, such as a generator or an electrical cabinet. This method of fire protection works by introducing a sufficient quantity of suppression agent throughout the volume of the enclosure to suffocate the fire.

Extinguishing Medium

BS 6164:2019 recommends a variety of suppression agents for fixed fire suppression systems, depending on the nature of the plant or equipment to be protected.

  • Heavy mobile plant

ABC dry chemical, also known as dry powder, is currently the most widely used agent in the vehicle fire suppression market to protect heavy mobile plant. On a weight basis, it is the most effective agent in suppressing fires and provides rapid fire knockdown. It is effective against Class A, B and C, as well as electrical fires, covering all the fuel sources present in mobile plant. Dry chemical works by coating the fuel source with a thin layer of powder, separating the fuel from the oxygen in the air.

Due to its fine powder form, it also disperses easily to cover even hard to reach areas

The powder also works to interrupt the chemical reaction of fire. Due to its fine powder form, it also disperses easily to cover even hard to reach areas, aiding coverage of the fire hazard areas. BS 6164:2019 also refers to the need for cooling to prevent fire reignition. Reignition can occur after fire suppression system discharge due to the extremely high temperature of vehicle components such as turbochargers and exhaust manifolds.

wet chemical suppression agents

Diesel has an auto-ignition temperature of 220°C; in order to prevent fire reignition it is necessary to reduce the surface temperature of components below this critical temperature. This can be achieved by using wet chemical suppression agent, which provides cooling of superheated components to below 220°C, significantly reducing the risk of fire reignition.

A twin agent fire suppression system combining dry and wet chemical suppression agents is therefore the optimal solution for mobile plant fire protection. The dry chemical offers rapid fire suppression and excellent coverage, while the wet chemical provides cooling to prevent fire reignition after system deployment.

  • Static equipment and enclosures

Enclosures such as electrical cabinets, generators and transformers can be protected with a clean agent fire suppression system. These systems disperse an inert gas to suppress the fire, using a total flooding application method. They work by reducing the oxygen in the enclosure below the level required for combustion. Clean agent is electrically non-conducting and leaves no residue upon evaporation.

Fire Detection and System Activation

Even the most effective suppression agents depend upon a rapid and reliable fire detection and activation method to trigger the fire suppression system. The most common form of fire detection used in fire suppression is heat detection, including spot heat detectors, electronic linear heat detection cable and pneumatic linear heat detection tubing.

  • Heavy mobile plant

Mobile plant such as excavators and dump trucks are subject to significant shock and vibration during operation

Mobile plant such as excavators and dump trucks are subject to significant shock and vibration during operation. This is major concern to anything that is installed in the vehicle, including fire suppression systems, as it can lead to system failure. Pneumatic linear heat detection tubing uses a tube pressurized with nitrogen, which bursts when exposed to fire temperatures, activating the system.

Tube pressure leakage is common in these systems, and damage to the tube (trapped, kinked or cut tube) can cause false system discharges. These false discharges are common in pneumatic fire suppression systems installed in heavy mobile plant as the shock and vibration exposes the tube to harsh operating environments.

heat sensitive polymer

Electronic fire suppression systems using linear heat detection cable provide the most reliable protection for off-road vehicles, as they are designed to withstand the level of shock and vibration common in these environments. These systems significantly reduce the chance of false discharges in comparison to pneumatic systems, as they are able to differentiate the electrical signal resulting from a fire from the signal from damage to the detection cable.

Only a fire will melt the heat sensitive polymer that separates the conductors. Once the polymer melts, the conductors initiate contact with one another and communicate with the control module to discharge the system.

  • Static equipment and enclosures

As static equipment is not exposed to the levels of shock and vibration common in mobile plant, a pneumatic fire suppression system using linear heat detection tubing can be used, providing a more cost-effecting solution for enclosure fire protection. A fire suppression system is the best way to protect equipment against a fire. However, good equipment maintenance practices can help reduce the chances of a fire in the first place.

tightening loose connections

Regular maintenance checks and procedures are strongly recommended to help reduce the risk of equipment fire. These include keeping equipment clean both internally and externally, regularly inspecting the primary ignition points, checking for wear and tear of diesel, hydraulic fluid and electrical lines, tightening loose connections, and inspecting the braking system for proper adjustment, especially if the brakes overheat when not engaged.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

How Technology Helps London Fire Brigade With Incident Command
How Technology Helps London Fire Brigade With Incident Command

Drones give Incident Commanders an aerial view, increasing their situational awareness of fires and helping them to develop tactics to tackle them. Station Officer Lee Newman details how the technology was implemented by London Fire Brigade and the continued benefits. Identify external risks The Grenfell Tower fire has resulted in revisions to several operational procedures and the introduction of new equipment within the Brigade. A few months after the fire, the Brigade was tasked with setting up a trial to test the feasibility of having a drone capability to identify external risks and assess building stability at incidents, providing essential safety information that could facilitate ongoing internal firefighting operations. Implement the use of drones The Brigade implemented the use of drones and acquired a Matrice 210 V1 and a Phantom 4 Working with partners who had an existing drone capability, as well as drone experts, the Brigade began work to implement the use of drones and acquired a Matrice 210 V1 and a Phantom 4 as a trainer and reserve drone. In the summer of 2018, an Emergency Services bespoke course was run by Essex Police to train the Brigade’s team of drone pilots, who were all PfCO qualified within one week. From start to finish, it took just nine months to get London Fire Brigade’s drone team operational. Working of the drones On its first day of being available for incidents, the team received an order to attend a 15-pump fire at a leisure center, which was under renovation. They were asked to confirm if there were cylinders on the roof of the building and immediately put the drone to use. The team flew and relayed the camera footage onto a large screen that was fitted into a van provided for the trial. The drone footage was able to identify, to the Incident Commander’s satisfaction, that the cylinders were actually rolls of asphalt due to be laid on the roof as part of the renovation. If the drone concept could have proven its use in one job, this was it. The information from the drone allowed the Incident Commander to decide not to make it ‘cylinders confirmed’ and saved a lot of unnecessary extra appliance movements. Applications of drone Since that first callout, the team has been to around 300 incidents of six pumps or more, including persons in the water, fires, and various missing people’s incidents both in London and into other counties, assisting police forces. From start to finish, it took just nine months to get London Fire Brigade’s drone team operational Drone inventory The Brigade’s drone capability inventory includes a Matrice 300 with an H20T dual thermal and optical camera; a DJI Mavic 2 Enterprise Dual with multi attachments; a Mavic Air 2 and a Yuneec 520. The Brigade also has a Teradek live streaming device and multiple tablets for receiving the streamed footage. The Brigade operates with two Mitsubishi Outlander PHEVs – plug-in hybrid SUVs – and has split the drone equipment into two, with one vehicle carrying the drone and batteries, and the other carrying all the support kit and ancillaries. Working in dark conditions The drones are permitted to fly up to 400 ft above ground level or higher in an emergency and can fly as fast as 50 mph. They also can act as a loudspeaker to give instructions or reassurance and shine a bright spotlight in dark or low light conditions. 24/7 service The Brigade has eight pilots trained and operates a 24/7 service The Brigade has eight pilots trained and operates a 24/7 service. The team is working closely with its blue light partners, including the: Metropolitan Police Service, several search and rescue teams, and a host of fire services surrounding the capital, as well as giving advice to other upcoming drone teams around the UK. Use of drone in future The Brigade’s drone capability has been molded to how it sees the future and what it holds in the way of drone use. For example, the Brigade has developed a capability to drop water rescue aides to people at water incidents, which helps to keep them afloat long enough to be rescued. The drone can also be used alongside the swift water rescue teams to provide situational awareness of hazards and the resulting risks during the rescue phase. Delivering fire escape tools The Brigade also invested in fire escape hoods in late 2018 and has already demonstrated how one might be delivered via a drone to a balcony above the height of an aerial appliance while using the Mavic Enterprise 2 to relay instructions via the loudspeakers. These possible new uses are pushing the boundaries of the Brigade’s original concept and demonstrate how London Fire Brigade works to stay ahead of the curve. 

Chicago Bans Dogs From Firehouses, Despite Long-Held Tradition
Chicago Bans Dogs From Firehouses, Despite Long-Held Tradition

There is a long tradition of canines in the fire service, from Dalmatians riding shotgun in the fire truck to mixed breeds rescued from fires that later become the fire company mascot. The tradition has taken a hit recently in Chicago, where dogs are no longer allowed at firehouses after one station dog killed a smaller breed canine near a firehouse in the Englewood neighborhood. The incident The firehouse dog in Chicago, named Bones, was a mixed breed stray rescued off the street that was living at Engine 116 at 60th Street and Ashland Avenue. A neighbor was walking her smaller breed dog past the firehouse and watched in horror as Bones attacked and killed her small dog. After the incident, Chicago’s Acting Fire Commissioner Annette Nance-Holt issued a department memo: “Any and all prior permissions for dogs in the fire stations or on fire apparatuses are hereby revoked … effective immediately.” Chicago Firehouse dogs Most of Chicago’s firehouse dogs are strays that were picked up and brought to firefighters by the public. Fire crews and paramedics care for the dogs, train them, feed them and get them inoculated and spayed or neutered, then ask formal permission to keep the dogs on site. Historically, permission has been granted, in effect saving the dogs from being euthanized. Breed of choice The tradition of dogs and the fire service goes back centuries, to the 1700s, when carriage dogs first trotted alongside horse-drawn fire carriages. Dalmatians were the breed of choice, given their good temperament, calming effect on the horses Dalmatians were the breed of choice, given their good temperament, calming effect on the horses, and grace under pressure. The Fire Department of New York (FDNY) began utilizing Dalmatians as early as the 1870s. Dalmatians as firehouse ambassadors When motorized vehicles came on the scene, Dalmatians were already associated with firefighters, who continued to keep them on-site as firehouse residents and mascots. Increasingly, Dalmatians and other dogs became public ambassadors for firehouses and were involved in public education about fire safety and emergency preparedness for school and community groups. For example, Sparkles the Fire Safety Dog, a Dalmatian from Clarksville, Ark., was a character in her own set of children’s books about fire safety and traveled around the country teaching children about fire tips. reduce stress, provide comfort Currently, firehouse dogs are other breeds, too, many rescued from house fires or other tragedies. Firehouses often adopt dogs, who become symbols of resiliency, bravery, fortitude – and provide comfort and companionship for firefighters who face high levels of stress on the job. After the 9/11 attacks, two firefighters from Rochester, N.Y., gifted the FDNY Ladder 20 company a Dalmatian puppy, appropriately named Twenty. The dog served as a source of comfort to the firefighters, who lost seven members of the company in 9/11. Dogs recognize signals Taken in as a stray in 1929, a dog named Nip served 10 years with New York’s Engine Company No. 203. During his service, the dog was injured by broken glass, falling debris, scalding burns, and bruises from falling off the fire engine. Nip could recognize all bells and signals. On fire scenes, Nip could alert firefighters if he knew something was wrong and sometimes run into burning buildings to look for victims. Unfortunately, Nip was killed by a hit-and-run driver in front of the firehouse in 1939 (and was stuffed by a taxidermist and displayed at the firehouse until 1974). Dogs promote fire safety Dogs promote fire safety outside the firehouse Dogs also promote fire safety outside the firehouse. For example, accelerant-sniffing dogs are trained to detect minute traces of accelerants that may be used to start a fire, according to the State Farm Arson Dog Program. The special bond between firefighters and dogs is the stuff of legend, despite the recent unfortunate events in Chicago – an ignoble scar on a long, colorful history of dogs in the fire service. Hopes remain that the decision can somehow be reversed, based on social media postings. “This is the first tragedy I have heard of in … 25 years,” said the administrator of the Firehouse Pups group.

What Impact Has COVID-19 Had On The Fire Industry?
What Impact Has COVID-19 Had On The Fire Industry?

The COVID-19 pandemic has had ramifications for almost every industry, some more than others. With the pandemic stretching well into a second year, the non-medical consequences continue, and many are wondering about which of the required changes might become permanent. As regards the fire sector, we asked our Expert Panel Roundtable: What impact has COVID-19 had on the fire industry?

vfd