Fire Suppression System Accessories - Expert Commentary

How Targeted Suppression Stops Fires At The Source
How Targeted Suppression Stops Fires At The Source

While whole room protection – sprinklers or gas systems – is a common choice, there is an argument for thinking smaller; taking fire detection and suppression down to the equipment, enclosures and even the components where a fire is most likely to start. Traditional Fire Suppression Methods A traditional water-based sprinkler system is the most common form of fire protection found in commercial and industrial buildings. They offer reasonable cost, large area protection for entire facilities, safeguarding the structure and personnel by limiting the spread and impact of a fire. Every square foot of the protected area is covered equally regardless of the contents of the space, whether it’s an empty floor or an object with an increased risk of fire. Sprinklers aren’t always the most appropriate choice. Not all fires are extinguished by water of course, and in some cases, water damage can be just as harmful or even more so than the fire. They are an impractical choice for instance for facilities housing anything electrical, such as data centres and server rooms. There is also the risk of accidental activation, with an estimated cost of up to $1,000 for every minute they are left running. Water damage can bejust as harmful or even more so than any fire, so sprinklers may not beappropriate An alternative method to protect whole server rooms and data centres is gas fire suppression, which either suppresses the fire by displacing oxygen (inert) or by using a form of cooling mechanism (chemical/synthetic). These aren’t without risk; in the case of inert gas, oxygen is reduced to less than 15% to suffocate the fire, but must be kept above 12% to avoid endangering the lives of personnel. Similarly, clean agent gas can be toxic in high doses. Targeted Supplementary Fire Suppression There are smaller, focused systems that give the option of highly targeted supplementary fire suppression within fire risk areas. Installing a system directly into the areas most at risk, means that fires can be put out before they take hold and cause serious damage. Both sprinkler and gas systems can contain a fire, but micro-environment or closed space systems are completely automatic, detecting and suppressing the fire so rapidly that activating a sprinkler or gas total flooding system often isn’t necessary. The most popular enclosure fire suppression systems achieve this though the use of a flexible and durable polymer tubing that is routed easily through the tightest spaces. The tubing is extremely sensitive to heat and, because it can be placed so close to potential failure points, detects it and releases the fire suppression agent up to ten times faster than traditional systems. An airline was forced to cancel over 2,000 flights after a “small fire” in one of its data centers Cost-effective Fire Protection Highly customizable, small enclosure fire suppression is specifically designed to protect business critical spaces and equipment. It is typically used inside machinery like CNC machines, mobile equipment like forklifts and inside server rooms and electrical cabinetry but is suitable for any hazard that’s considered to have an elevated fire risk. Some may question the need or cost-effectiveness of protecting micro-environments. However, examples abound of where fires that have started at component level have gone on to cause damage of the highest magnitude, and the cost of downtime can be crippling to many time-sensitive facilities and processes. An airline was forced to cancel over 2,000 flights in August 2016 when what was described as a “small fire” in one of its data centers ultimately led to a computer outage. The cost of that small fire, and the domino effect that quickly escalated from it, has since been announced as $150m. Admittedly that number is unusually high - the average cost of a data centre outage today is estimated at a more conservative $730,000 – but this is still an expense businesses can ill afford. Preventing Major Losses Staying with the transport industry, newer metros systems have redundant systems in place to prevent interruptions. However, older metro lines, such as the one in New York City, have experienced electrical fires that started small, but grew to such a magnitude that service was affected for months. Older metro lines, suchas New York City's, haveexperience electricalfires that start small butgrew exponentially Equally - happily - there are also many instances where the installation of small enclosure fire suppression has prevented disaster. A wind energy customer experienced a fire in a turbine converter cabinet. The loss of the cabinet was valued at over $200,000 and disabled the turbine for six weeks. Following investment in fire suppression systems inside the electrical cabinet, a subsequent fire was detected and suppressed before major damage could be caused. The cost on this occasion was therefore limited to a $25,000 component and downtime was less than two days. In the manufacturing world, CNC machines are valued at hundreds of thousands of dollars and need to be constantly operational to justify the investment. Oil coolant used in the machines can create a flash fire in an instant due to failed components or programming errors. The fact that many of these facilities are run ‘lights out’ with no personnel present further exacerbates the risk. If a fire is not dealt with immediately, the machine will be destroyed; sprinklers don’t react quickly enough for this scenario and would be ineffective. Ensuring Business Continuity One such flash fire occurred inside a protected CNC machine at a machine shop in Iowa. The polymer tubing ruptured within a fraction of a second, releasing the suppression agent and extinguishing the flames. The machine was undamaged and was operational again with a few hours. Contrast this to a previous fire at the same facility in an unprotected machine; it was out of operation for 4 days, costing the business thousands of dollars in downtime In short, fire protection is an essential element of our industrial and commercial environments to ensure both safety and business continuity. However, the nature of that protection is changing, as capacity increases to cost-effectively protect specific areas where fires are most likely to start. Risk mitigation analysis needs to look beyond what has been accepted in the past and find ways to further limit the impact of a small fire using this next level of protection. The benefits can really have a positive effect on the bottom line in the event of fire.

Integrated Life Safety: How Smart Buildings Offer Effective Fire Detection
Integrated Life Safety: How Smart Buildings Offer Effective Fire Detection

The era of “smart buildings” is here, bringing new opportunities for significant gains in efficiency, safety and environmental protection. In an interview, Rodger Reiswig, director of industry relations at Johnson Controls Global Fire Protection Products, offers his insights into the impact of smart buildings on fire detection and what it means for organisations planning new facilities. Q: How do you define smart buildings? The term “smart buildings” means different things to different people. For some, it’s all about the Green Initiative. Is the building able to sustain itself or reduce its carbon footprint? Can they reuse some of their water or generate electricity from onsite solar cells or wind turbines? Another definition of “smart buildings” is based on sensors. Is the building smart enough to know that, if I’m the first person there in the morning and I swipe my card, it should switch the HVAC system into occupied mode? Can it start to turn the lights on? Can it adjust the window shades to allow the sun to come in? Can it call the elevator down for me because it knows that I’m in the lobby and I’m going to the tenth floor? It’s all about how the systems integrate with one another, not just providing information to each other, but also interacting with one another, causing things to happen from one system to another. Q: How close are we to the vision of an integrated intelligent building where all the systems work together? We’ve already been doing some integration for a few years now with things like HVAC and lighting. Now we’re seeing tighter integration where, for example, we can use the position of the sun to get the best impact of sunlight to start to heat the building in the winter. One of the biggest challenges that we see in the smart building environment is protocols or topologies for how one system talks to another. The fire alarm system uses a certain protocol or language. The HVAC system uses another protocol or language, and so on. Creating an environment where systems can talk to one another and not just send, but also receive information – that’s the difficult part. Everybody can send information out. It’s easy for me to tell you what is happening in a system. But for you to tell me what’s happening in your system and then expect me to do something with that information, that’s when it gets a little bit harder. Q: What makes system-to-system communication challenging? Because of the critical role they play in protecting lives and property, life safety systems require a level of reliability and resilience far beyond that of other building systems or networks. Therefore, we have to be extremely careful about how we allow information from other systems to come into the life safety system, in case that information should affect the performance of the system. In addition, the design and specification of life safety systems is guided via three different means: building codes, standards and listings. Each of those means is controlled by different organisations. Any proposed changes to life safety networks have to pass muster with those entities, and that takes time, effort and consensus-building. When we’re talking specifically about system-to-system communication, the listing entities, organisations like UL and FM Global, regulate how much information can come into any life safety system. The listing documents require that there be some type of a barrier or gateway to prevent unauthorised or corrupted information from coming into a fire alarm system, causing harm or causing it to lock up. Life safety systems require a level of reliability and resilience far beyond that of other building systems or networks We will see all building technologies become more integrated over time as we work through the different entities and people begin to realise the benefits of improved safety, lower environmental impact, and reduced costs. Q: How will fire detection systems benefit from other sensor information available in a building? One of the things being explored is occupancy sensors that tell where people are located in a building. Some type of telemetry could be used to understand where people are concentrated in a facility and, based on that, make the fire alarm system more or less sensitive to smoke. If a lot of people are congregating in one area, there might be more activity and more dust being stirred up. You could use that information to set different alarm parameters compared to, for example, an empty building with no significant air movement. We see that type of operation happening. Knowing how many people are in a building and where they are located is also a critically valuable piece of information for first responders. Here’s another example: let’s say we have a big parking garage next to a mall. Cars come in, and perhaps some people leave their cars running, or the cars aren’t operating as efficiently as they should be. You could have carbon monoxide detectors and occupancy sensors in the garage, and when the garage becomes crowded and carbon monoxide levels start to rise a bit, you could tell the fire alarm system not to go into alarm, but instead to turn fans on to get some fresh air moving throughout the building. It’s performing a life safety function, but at a non-emergency level. Q: Are you involved in any cross-industry standard-setting organisations to enable better communication among building systems? On an industry level, Johnson Controls is very active in the development of codes and standards. We have people who sit on committees for things like healthcare occupancy standards. We have engineers that contribute to product listing documents. We have people who participate in committees that determine how products should be installed and maintained. We’re even involved with groups, like the National Disabilities Rights Network, that advocate for laws that promote equal access and notification of life safety events. The list goes on. Fire alarm systems couldbe used to detect and solve non-emergenciesbefore they become threats Just to give you an example, there’s a standard called BACnet, Building Automation Control Network, which was developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers. It’s a common protocol that allows all types of systems to get on the same communication platform and be able to send and possibly receive information, depending on the product and the type of system it is. BACnet is based on entities, so within their system, they need to define what each entity is. What is a thermostat? What is a variable air box? What is a lighting controller? What is a fire alarm smoke detector? We work closely with this organisation to create entities that can reside on their infrastructure so that, for example, the lightning system recognises what a smoke detector is when they send that entity out to the network. It’s one of the most important methods we are using to communicate among dissimilar systems. Integrated systems mean elevators could be used to evacuate people in an emergency We’re working on two fronts: internally and industry-wide. We’re developing third-party interfaces that enable an outside entity to sign a non-disclosure form and get the keys to the kingdom, if you will, on our protocols for how our systems operate – the data stream that we can send out and receive back – allowing that third-party developer to create some of these interfaces themselves. That has been one of our challenges, because we have always said that this is a fire alarm system, and if you want that type of an interface, we need to write it and get it listed. We had to step back and say, what if we developed a barrier gateway and allowed somebody else to develop the protocol and, done properly, became able to receive and send information to the fire alarm system? It’s like what Apple does with apps. We are going down that road with this third-party interface gateway. Q: Have these developments changed how you’re planning for the future development of fire detection systems? Yes, they have. We are looking at how we can use these systems strategically to make life safety systems better. And life safety is becoming more nuanced, proactive and comprehensive. Can I communicate and use this information to unlock the door so people have a clear egress? Can I start to use the elevators to evacuate people during an emergency? We’ve been told traditionally to use the stairwell and not the elevator in the event of a fire. But it takes a person about a minute a floor to get out. That’s a problem if you’re in an 80-story building. You have elevators sitting there. Is there something we could do to allow these elevators to be used to evacuate people? The American Society of Mechanical Engineers has been working hard on developing the language and requirements to do that. It’s just one example of how having systems integrated and talking to each other allows us to create smarter solutions that can help make facilities safer. Q: What advice would you give to building owners, architects, designers or contractors to help them start planning today for the future of smart buildings? The most important thing is to build awareness. The average building owner doesn’t know that a lot of this technology even exists. We need to inform them that there are options they can ask about. One of my recommendations would be to ask your design engineer. As you discuss the kind of windows you want, the kind of flooring and lighting and so on, ask how these systems could integrate together and what the benefits of integration would be. The bigger your facility, the greater the benefits of integrating these systems. Another resource that people don’t use often enough is the AHJs, the authorities having jurisdiction. That’s the local fire marshal, the fire chief, the local first responders. Don’t be afraid to sit down with a fire marshal, tell them what kind of building you’re putting in, and ask them what would help them respond in the event of an emergency in that building. They’ll be glad you asked, because these people see a lot of different buildings and respond to emergencies every day.

Steps To Consider Before Deciding On A Smoke Alarm
Steps To Consider Before Deciding On A Smoke Alarm

Interconnected smoke alarms provide an earlier warning and the best chance of escape In this article, Neil Perdell, National Technical Manager at Aico Ltd., suggests some crucial and simple steps to consider before deciding on a smoke alarm. Making a case for wireless smoke alarm systems, he also lists the key characteristics that one must consider when selecting such a system for installation. Wireless smoke alarm systems - key characteristics In today’s highly competitive electrical installation market, margins are constantly being squeezed, costs are rising, and every business needs a competitive edge. Installers of mains-powered smoke alarms, will no doubt know that they need to be interconnected within a domestic property to meet building regulations and standards. Interconnected smoke alarms provide an earlier warning and the best chance of escape. Traditionally these alarms have been hard wired together but more and more installers are now using wire-free/ wireless alarm interconnection, which uses Radio Frequency (RF) signals instead. They offer such time and cost saving advantages over hard-wired smoke alarm systems that, in these days of austerity, they’re a very sensible choice. But with more installers using them, alarm installers should pick a reliable system that is quick and simple to install in order to deliver a competitive advantage. Tips to find the right smoke alarm system - Listed below are some of the key characteristics and parameters that one must evaluate in a wireless interconnect smoke alarm system. Reliability The first real tip is to install the most reliable technology, something that really can be trusted to work. Call-backs are expensive. Struggles with poorly performing technology don't just waste time on site but can cause further problems later. Determining what is a reliable system from those available isn’t as easy as simply picking up a product and looking at it. One should check with colleagues to see what has worked for them and try to use a system that has been tried and tested over many years. Alarm installers should pick a reliable system that is quick and simple to install in order to deliver a competitive advantage A system that uses a multi-level repeater to pass RF signals from alarm to alarm is something else that should be considered. This ensures good RF signal strength in a property and provides multiple signal paths if an obstruction is placed in the way of a signal. While it may not seem an obvious issue, the question of back up in the event of a mains failure should be taken into consideration. If smoke alarms don’t work when they should, not only could there be liability issues, but this could result in fatalities as well. If possible, always choose a unit that has a 10-year rechargeable Lithium cell back up as standard as it is designed to outlive the life of the alarm itself. The battery backup should power both the alarm itself and the wireless technology so that the whole alarm system continues to work as normal and the system isn’t reduced to just standalone responses. Units that only offer conventional, primary battery backup should be avoided as these may need frequent changing and numerous surveys show that householders simply cannot be trusted to do this. Easy installation The next tip is to check just how simple the alarm system is to install and setup. Ideally, the terminal blocks should be built into the base and screw terminals to ensure reliable and robust connection. Check the units to see how much space is given to cabling. A useful feature to look for is the ability to make connections with the base off the ceiling or on. System setup should be examined well as this can catch people out, either because it is difficult and / or because it takes too long. A system that adopts ‘House Coding’ is a better option as this allows the individual alarms to be connected together very quickly. The best systems may have over 16 million codes – but others may have as few as 16. Generally speaking, the more codes the better – especially when installing systems in a number of properties close to each other. Here, having too few codes can mean serious problems, causing adjacent systems to activate each other. It is important to check the system setup to ensure that adjacent systems will not activate each other For simplicity, systems featuring dipswitches that need to be individually set to a certain combination on each unit in the system should be avoided. They tend to be small and difficult to use, making it far easier to make a mistake. Checking that the property has been successfully House Coded can also be quick – or complicated. Some systems have timesaving built-in indicators and a ‘House Code’ light on the base, which flashes to show how many units are connected to the system. For instance, if a property has five smoke alarms recently installed, the ‘House Code’ light will flash five times in sequence to show that all five have been successfully installed and interconnected. It’s an essential time saving feature. Form and function It’s also worth noting that some alarm systems offer greater functionality than others. This may enable installers to accept jobs that are out of the ordinary or more complex and demanding than usual. This might include the ability to ‘mix and match’; i.e. a system that allows extension of existing hard-wired systems to create a mixed hard-wired/wireless interconnected system (ideal for loft conversions). Accessorize! To get the most from a system, it is important to check what accessories are available. The best systems are available with alarm control switches, which allow for convenient Test, Silence and Locate functions – particularly important with larger installations. They enable the user to easily test every alarm on the system, identify which alarm has sounded and silence any nuisance alarms. This can all be done from one convenient, central point. It’s a great safety feature, as users don’t have to reach up to test a ceiling mounted alarm. The switch should also be wire-free and easily House Coded into the system. Other useful accessories to look for are relays, manual call points and switched input modules to provide application solutions. This flexibility can be enormous, as it allows the system to trigger flashing strobe warning lights or warden call systems for example. They can also interface with specialist alarm systems for the Hard of Hearing and – in some cases – with Carbon Monoxide alarms for a complete home safety system. While many wireless interconnect alarm systems may seem very similar at first glance, on closer inspection, their design and functionality can differ considerably. Choosing a quality, proven and reliable system is always the first and foremost consideration – because lives depend on it. Beyond that, choosing well-designed technology can make installation simpler, quicker and safer. Being familiar with additional functionality can add extra value to a job and enable installers to win more complex installations. Neil PerdellNational Technical ManagerAico Ltd.  

vfd