Fire Suppression System Accessories - Expert Commentary

Securing The Next Generation Of 911
Securing The Next Generation Of 911

While conducting research for my 2021 Wisconsin Public Safety Commission (WIPSCOM) conference presentation, it became immediately clear that securing the nation’s public safety answering points (PSAPs) is no longer just an IT challenge. Shifting from an analog to digital operating environment — the next generation of 911 — will require strategic investments into three key areas: people, processes and technology. As call center technology evolves nationwide, the need for greater cybersecurity in the public safety space has never been more important. Internet connected systems Traditionally, PSAPs received calls over analog telephone networks consisting of copper wire transmission lines and dated cellular networks spanning a smaller area in close proximity to call centers. With the introduction of next generation 911 and the accompanying digital telephone networking services, the exposure of call center networks to would-be attackers has exponentially increased, allowing potential access from anywhere due to internet connected systems. A good analogy is thinking of the points of entry into your home. The legacy method allowed two entries into the house — the front and back door. With the introduction of digital networks, there are now more doorways into the home or call center, signifying a greater need for security and employee awareness of threats. Many of these recent attacks target people using a technique called social engineering First responder organizations Since 2019, there have been approximately 300 cyberattacks impacting local government agencies, including police stations, emergency dispatch call centers and first responder organizations. 125 of these attacks specifically focused on public safety agencies such as firefighting or EMT stations, with attacks reported in all 50 states. More recent examples show that cyberattacks focusing on our first responders are increasing at an alarming rate. Many of these recent attacks target people using a technique called social engineering. This is when attackers attempt to trick victims through telephone calls and/or emails to assist the attacker in introducing viruses to the network, provide sensitive data or share usernames and passwords to achieve their criminal motives. Cyber criminals' primary objective is to use social engineering techniques to achieve a much more serious attack: ransomware. Critical computer systems Ransomware is a type of malicious software (malware) that prevents access to sensitive files Ransomware is a type of malicious software (malware) that prevents access to sensitive files, data and critical computer systems using encryption that only the attacker can unlock. Victims must pay a random sum of money, usually in an untraceable cryptocurrency, to the attacker who promises to decrypt data once they receive the funds. A look at attacker motivations can help us all understand — and mitigate — the threat to our first responders. Here are three primary reasons why cybercriminals target public safety answering points: Monetary gain: Infecting a PSAP with ransomware can lead to significant payouts in order to restore first response services. Disruption of services: Shutting down critical services can put threat actors in the public eye while also playing a major role in multi-stage attacks. Cheap thrills: Attackers and, at times, even misguided amateurs can target critical services for notoriety or social standing. Mitigating cyber risk The human element, actions or inactions played a direct role in 85% of data breaches Regardless of the motivation, the outcome is generally the same: a disruption of first response services that are critical to protecting our communities and families. According to Verizon's 2021 Data Breach Investigations Report, the human element -- or people’s decisions, actions or inactions -- played a direct role in 85% of data breaches. As cyber threats targeting PSAPs and first responder teams continue to grow in number and severity, addressing the threat through employee awareness and education is a good first step in mitigating cyber risk. Here are four steps any PSAP can take now to assess and mitigate cyber threats targeting their organization. Security awareness training Educate employees with security awareness training - Ongoing security training efforts should occur at a general level for all PSAP employees, followed by more targeted, role-based security training for key roles and departments such as call center managers, dispatchers or those with access to sensitive data. General security awareness training efforts should focus on broad but relevant security topics employees are likely to encounter, such as how to identify a phishing email. Security training programs should occur at least annually, and training content reviewed semi-annually Role-based security training efforts should go one step further and include topics like how management should respond to ransomware payment demands or how to verify the identity of external callers asking for sensitive information or urgent payments. Security training programs should occur at least annually, and training content reviewed semi-annually to ensure completeness, accuracy and relevance of training content related to your operating environment. Physical building access Verify and strengthen employee access controls - This includes physical building access and logical access to any information or computer systems your organization operates. Most organizations have several internal or external users such as vendors, cleaning companies and other organizations who come into contact with the offices or other physical locations, increasing the risk of theft or unauthorized access via impersonation or tailgating attacks. Ensure exterior locations are sufficiently secured via electronic badge access or a minimum of key access with code entry. First responders and public service agencies should train employees to visibly display employee badges and report infringements to management in the event an attacker infiltrates the building. Multi-Factor authentication External visitors should be required to announce their arrival in advance to the organization External visitors should be required to announce their arrival in advance to the organization, enter through designated areas, check-in with a receptionist or direct contact, log their entry, show identification and wear a clearly identifiable visitor badge. Access to computer systems that contain sensitive data such as employee records or connections to other state and federal agencies should be secured via multi-factor authentication. Multifactor authentication is a security term referring to authenticating a computer system using several factors, including something you know (e.g., username or password) , something you have (e.g., smartphone) or something you are (e.g., fingerprints or voice pattern). Using two or more factors when accessing a computer system is crucial to keeping the cybercriminals out! Federal threat intelligence Leverage free resources to mature your cybersecurity posture - First responders and public service organizations have many free cybersecurity resources at their disposal. This includes federal threat intelligence via security advisories, which outline vulnerable software or hardware products they use, and direct consultation services from cyber response teams local to the area, which are taxpayer funded. The US-CISA also provides regional consultation services to assist all local government agencies Every first responder and public service organization should consider becoming a member of a relevant Information Sharing and Analysis Center (ISAC) such as the Multi-State Information Sharing and Analysis Center (MS-ISAC), as they provide free threat intelligence services and consultation resources to help boost cybersecurity. The US-Cybersecurity and Infrastructure Security Agency (US-CISA) also provides regional consultation services to assist all local government agencies in maturing their cybersecurity posture. Public service organizations Hire external security firms to identify and correct weaknesses - To the extent allowed by budgets and personnel, first responders and public service organizations should hire external security or audit firms to assess the state of their cybersecurity practices and posture. These firms specialize in security best practices and assess security controls' adequacy across a wide array of organizations. It is often useful to bring these firms in for a fresh perspective on how the organization operates and its vulnerabilities. These engagements are typically performed annually and focus on core computer systems and business processes that involve sensitive data.

Using State-Of-The-Art Technology To Prevent And Put Out Wind Turbine Fires
Using State-Of-The-Art Technology To Prevent And Put Out Wind Turbine Fires

As more and more countries in Europe and North America commit to net zero, a key strategy is replacing old fossil fuel-driven forms of power generation and replacing them with renewable energy, such as wind turbines and solar panels. The wind industry has seen a particular boom, with tens of thousands of new turbines installed every year across the globe. However, like any other heavy machinery, wind turbines can catch fire due to mechanical or electrical failures. These fires can have impacts beyond the turbine if there is secondary fire spread to surrounding lands, resulting in potentially catastrophic loss. Without this technology in place, a single fire could cost $7-8 million and cause substantial downtime. The time is now for the industry to use all available technology to prevent these incidents and reduce the risk of fires spilling into the environment. How do wind turbine fires start? Wind turbine fires can catch fire due to external causes, such as lightning strikes, or internal causes, such as mechanical or electrical failure resulting in sparks or heat in the nacelle. Most nacelle fires start at one of three points of ignition – converter and capacitor cabinets, the nacelle brake, or the transformer. Nacelle brakes are used to stop the turbine’s blades from spinning in an emergency.  Converter and capacitor cabinets and transformers are necessary for the turbine to generate power and transform it into a voltage that can be exported to the grid. An electrical fault at either location can produce arc flashes or sparks, which can ignite nearby Class A combustibles, like cables, plastics, or fiberglass. Nacelle brakes are used to stop the turbine’s blades from spinning in an emergency. The brakes can cause turbine fires, albeit due to sparks from mechanical stress and friction rather than electrical failure. While some turbines have been designed with safer, electrical brakes, mechanical brake systems are often used as a backup in the event of power or control failure. These ignition points are all necessary for the safe generation of electricity from the wind, and cannot simply be designed out. As such, wind farm owners and operators must be ready to deal with fires when they spark. Why are wind turbine fires hard to fight? Modern wind turbines often exceed 250 feet in height, while most ground-based firefighting can only reach up to 100 feet. A team sent up-tower to manually fight the fire would constitute a major health and safety risk, as turbines have limited space and escape routes – putting employees not only in direct contact with fire but at risk of being in the turbine if it collapses. As such, when turbines catch fire, they are often left to burn out, with firefighters’ efforts focused on preventing the spread and clearing the area as fiery debris falls. This results in irreparable damage to the turbine, necessitating its replacement. What is the cost of a wind turbine fire? The cost of replacing a burned-out wind turbine depends on a number of factors. First and foremost is the size and initial cost of the turbine. Turbines with more than 3MW of rated capacity can cost between $3-10 million to install during development. Replacement turbines can often cost even more, as manufacturers are likely to charge more for individual, one-off installations. Another key loss is business interruption, or how long the turbine was offline – and therefore not generating revenue. The average loss due to a turbine fire was estimated by insurance company GCube to be $4.5 million in 2015. As turbines have grown larger and therefore more expensive to replace with greater losses in revenue, we expect a fire to cost anywhere between $7-8 million for new models. How can turbine owners and manufacturers manage fire risk? Firetrace’s system is designed with flexible Heat Detection Tubing, which ruptures in response to extreme heat or open flame Turbine manufacturers are already taking steps to “design out” fire risk in turbines. For example, lightning protection systems on turbine blades safely re-direct the surge of electricity away from cables, while condition monitoring systems can identify whether a component is overheating and likely to catch fire. In order to put out any turbine fires that do start at their source, turbine owners and manufacturers can install automatic fire suppression systems at common points of ignition. Firetrace’s system is designed with flexible Heat Detection Tubing, which ruptures in response to extreme heat or open flame, releasing a clean suppression agent precisely at the source of the fire before it can spread. Wind farm owners who have taken a more proactive approach to manage risk via fire suppression systems have been able to snuff out fires before they can spread throughout the turbine or into the environment. By investing in the latest technology for fire suppression, owners and operators have avoided the worst-case scenario, saving millions in operating costs.

Fire Protection For Paper And Pulp Plants
Fire Protection For Paper And Pulp Plants

There is a sense in some markets that the paper and pulp industry will decline owing to the digital technologies with which people interact every day. While this might be considered logical, the reality is completely different. In fact, the paper and pulp industry has experienced a steady growth and will continue to do so in 2021. Production of paper increased by more than 450% in the last decades and the demand of paperboard in the world is expected to grow significantly, driven by e-commerce and big retailers increasing their presence in the online sales universe. This sustained growth in production capacity and paper consumption presents several fire risks to companies and exposes communities that develop around paper mills, to the impact of disasters caused by these fire risks. Fire risks in the paper and pulp industry Paper and cardboard are combustible, but this is not the only fire risk found in these types of industries. Raw materials and finished goods storage are sensitive to fire. In addition, the paper making process includes several stages where fires can occur, due to hot surfaces or poor ventilation. The most relevant fire risks on a paper plant are: Storage Areas: As mentioned before, paper and cardboard are combustible. Solid paper blocks and reels have hard surfaces that don’t ignite easily, but usually these reels can suffer minor damages or have loose sheets that significantly increase the fire risk. When paper reels are stacked in columns, gaps in the center can act as chimneys and when fires start in the bottom of the stack, this chimney effect will accelerate smoke and hot air spread, increasing vertical and horizontal flame spread. Wood and Bale storage fire risks Bale storage also presents a high fire risk, as loose materials are always present Raw materials for the paper making process can have two main sources, forestry products (mainly wood) or recycled cardboard and paper. Wood storage presents several challenges, especially due to wood chips that are highly combustible and, in some cases, even explosive. Bale storage also presents a high fire risk, as loose materials are always present. Fire in baled paper is difficult to extinguish and generates heavy smoke. In many recycling facilities, these paper bales are stored outdoors, where paper or rags soaked in flammable liquids, embedded between the paper sheets, can ignite resulting in a fast spreading fire. Chemicals, flammable liquids and gases In addition, it is possible to find different types of chemicals, flammable liquids and gases that are used in the paper making process. These materials have their own fire-related risks that need to be taken in consideration. Production Areas: In pulp factories, there are several long-distance conveyors that transport wood and wood chips. These conveyors constitute a fire risk and the most probable causes of fire are bearing damage, overheating of the conveyor and igniting chips in the environment. IR dryers, a common source of fire After the wood has been transported, chipped and digested, the paper making process becomes extremely humid, due to the large amounts of hot water and steam needed. But, as soon as the pulp fiber sheet starts to dry, the hot surfaces in contact with the paper sheets can be a source of ignition. IR dryers used in the process are also a common source of fire in the paper industry. When the sheet of paper is formed, close contact with reels and bearings moving fast can create static electricity that could ignite loose paper or airborne particles. Problems like these are likely to be more extensive in tissue mills. Paper dust is generated in certain parts of the process, especially where paper shits are slit or cut. Poorly insulated steam pipes lead to fire Poorly insulated steam pipes can ignite paper dust or even their own insulation materials. In addition, paper dust gathers in the ventilation grills of machinery, causing overheating and igniting as well. Heated oil is used in several parts of the process as well and if a malfunction occurs on the Hot Oil Roll systems, leaks might occur, exposing hot surfaces to this oil and causing ignitions. A paper mill has hydraulically operated machinery, where leaks or sprays might ignite as well. Service Areas: As in many other manufacturing facilities, several service areas can be found. Electrical and network equipment rooms have an inherent fire risk due to damaged wires or equipment, overheating or short circuits in high voltage circuits. Transformer and generator areas entail fire risks as well. High fire risk for boiler rooms Flammable gas distribution systems can be ignition sources, in case of leaks or damaged pipes or valves Hot water and steam are key components for the paper making process. For this reason, paper plants use high capacity boilers that can be powered by flammable liquids or gases. A high fire risk can be considered for boiler rooms. Flammable gas distribution systems can be ignition sources, in case of leaks or damaged pipes or valves. In addition to the fire risks mentioned in these areas, many maintenance operations can also pose fire risk, especially when hot works are being performed. Sparks caused by welding or the use of certain tools can ignite paper sheets or dust in the air. Poor housekeeping and buildup of paper dust, for example, increases the risk associated with maintenance and construction works. Prevention, the first line of defense According to the Health and Safety Executive from the United Kingdom, 60% of fires on paper mills are caused by machine faults and poor housekeeping. The first line of defense to avoid fire risks in paper plants is prevention. As mentioned before, a high number of fires in these types of facilities occur because of poor housekeeping and machine malfunction. The key is to identify the risks and possible ignition sources, and apply measures to minimize them. As in many industries, fire protection has two main components: Passive and Active protection. Passive fire protection measures Passive measures include fire rated walls, ceilings, and floors in the most critical areas. Chemical storage areas should be physically separated from other dangerous areas, if this is not possible then the walls separating areas should be fire rated and materials must be stored in a way that minimizes the risk of fire spread by radiation or conduction. Proper compartmentalization and intumescent protection of structural elements should be part of the package as well. Passive measures include proper ventilation and smoke control. As mentioned before, paper dust is a major fire risk, which is why ventilation and cleaning of hoods over the paper machine is important to minimize the possibility of ignition. Fire resisting construction should be designed with the following goals in mind: Protection of escape routes Form compartments to contain fires that might occur Separate areas of higher fire risk Protect load bearing and structural members to minimize risk of collapse Sprinkler systems, gas extinguishing systems and hose reels Active fire protection includes sprinkler systems, gas extinguishing systems and hose reels to support fire brigades Active fire protection includes sprinkler systems, gas extinguishing systems and hose reels to support fire brigades. Finished goods stored indoors should be protected with sprinkler systems and the same should be considered for chemical storage areas and certain raw materials. Paper bales, ideally should be protected by sprinklers that are suitably designed to cope with the height and located, in all cases, 3 meters above the level of bales stacked vertically (which should not exceed 5 meters height). Spark detectors in hoods, pipes and ventilation systems Dangerous sparks could be generated in several parts of the paper making process, which is why spark detectors must be installed in hoods, pipes, and ventilation systems. Water spray and CO2 systems can be used to protect machinery against these risks. Means to fight fires, like extinguishers and hose reels, should be provided to support fire brigades. All the elements should be properly identified and all personnel should be trained and made aware of the location of such devices. Importance of fire alarms Fire alarms are required in all paper mills and fire alarm call points should be provided in all locations, according to international guidelines, such as NFPA 72 or EN54. The spread of flames and smoke in paper, wood and chemical storage might become extremely fast. For this reason, early detection is critical. Many technologies might be applied in the different areas of a paper plant. Nevertheless, there are dusty or humid areas where regular heat or smoke detectors might fail under certain circumstances. For these areas, especially located outdoors, innovative state-of-the-art detection solutions might be applied, like Video Fire Detection (VFD). NFPA 72 standard for flame and smoke detection NFPA 72 provides guidelines to implement this technology for flame and smoke detection NFPA 72 provides guidelines to implement this technology for flame and smoke detection, opening interesting alternatives for designers and fire protection engineers. Many EHS managers and fire protection professionals selected VFD, because it is the only fire detection solution that effectively covered their needs. Many engineers, specialized in fire protection for paper plants, explained that they tested linear heat detection, aspiration smoke detection, IR/UV detectors and even beams, but none of these technologies performed as they needed on the dirtiest or more humid areas. Video Fire Detection (VFD) solutions Outdoor storage areas are often unprotected, because deploying flame or heat detection in large open areas can be costly and mostly ineffective. VFD solutions can detect smoke and flames in outdoor conditions, allowing the monitoring and protection of wood and paper bales in large areas. Fire detection and alarm systems should be designed with the following goals: Minimize risk of fires, including the use of fire detection technology in areas where regular detection technologies cannot be implemented or are not practical. Minimize risk of flame and smoke spread, with state-of-the-art detection algorithms that guarantee fast and effective detection. Also, reliable algorithms minimize the possibility of nuance or unwanted alarms. In case of a fire, fast detection gives occupants life-saving time to reach to a place of safety, before the flames and smoke have spread to dangerous levels. Global production of paper and pulp reached 490 million tons in 2020, with many industries and markets depended on the paper and pulp supply chain. That is why innovative ways to protect this supply chain, are key to sustain the paper market growth in the future.

Latest Draeger Safety UK Limited news

What Impact Has COVID-19 Had On The Fire Industry?
What Impact Has COVID-19 Had On The Fire Industry?

The COVID-19 pandemic has had ramifications for almost every industry, some more than others. With the pandemic stretching well into a second year, the non-medical consequences continue, and many are wondering about which of the required changes might become permanent. As regards the fire sector, we asked our Expert Panel Roundtable: What impact has COVID-19 had on the fire industry?

Ensuring ‘Health For The Firefighter’ Includes Cleaning Of Equipment
Ensuring ‘Health For The Firefighter’ Includes Cleaning Of Equipment

The COVID-19 pandemic has presented new health challenges for firefighters, but it is far from the first major health concern in the fire service. For example, the risk of various cancers is up to twice as high among firefighters, and cancer causes 61 percent of line-of-duty deaths for firefighters. There are other health and safety concerns, too, from nutrition and fitness to vehicle safety and seat belt usage, from wellness to stress and trauma (and consequent issues of addiction). Supporting fire services Cultural issues are a driving force in managing the gamut of health and safety concerns for firefighters. Changing the mindset of firefighters about safety issues is critical to meaningful progress. It starts with awareness. COVID-19 may be the newest and most recent health concern, and addressing it has been a high priority. However, even long-term and well-known health threats in the fire service are not being adequately addressed.  Dräger found that some 84% of respondents admitted they were concerned about the risk of cancer Medical and safety technology provider Dräger, based in Lübeck, Germany, has launched a ‘Health for the Firefighter’ campaign to raise awareness and to support fire services in driving the necessary cultural changes to protect firefighter health. In a survey of United Kingdom firefighters, Dräger found that some 84% of respondents admitted they were concerned about the risk of cancer, which can be caused by embedded carcinogens in any equipment that can be absorbed by men and women using it. Robust hygiene processes “The COVID-19 pandemic, and ongoing fears over cancer, have highlighted the critical importance of hygiene, and a significant cultural change is required,” says Brian Hesler, a consultant and specialist advisor at Dräger Safety UK and a former chief fire officer. “We need to move away from firefighters wearing dirty kit like a badge of honor that proves their hard work and value, to understand that clean and well-maintained kit supported by detailed and robust hygiene processes are essential to mitigate every contact with contaminants.” Dräger’s Health for the Firefighter campaign will support the fire services in communicating and providing training on the importance of detailed hygiene processes, from handling and storage of masks and breathing apparatus (BA) equipment through to the subsequent cleaning of the kit after an incident has occurred. Enabling fire services Manual cleaning of equipment is still generally the norm within UK fire services. In the Dräger survey, 80% agreed that a result of the COVID-19 pandemic is more emphasis on cleaning equipment and hygiene control, although only 23% said the pandemic significantly changes their approach to cleaning equipment.  Dräger has launched solutions for cleaning breathing apparatus, respiratory masks and PPE equipment Consistency is often a problem with manual cleaning, and Dräger has launched solutions for cleaning breathing apparatus, respiratory masks and PPE equipment that reduce the risk of carcinogen contamination within emergency teams. The equipment is provided in partnership with Harstra Instruments, a Dutch manufacturer of cleaning and drying equipment. The Dräger package of solutions comprises cleaning products, logistical support and consultancy services to enable fire services to mitigate firefighters’ exposure to carcinogens. Equipment handling operations Washing machines clean using high-pressure water, drying cabinets are available in various shapes and sizes, and testing facilities ensure products are decontaminated. “Employers owe their employees a duty of care and are therefore looking to provide additional protection during training, post-incident and in day-to-day equipment handling operations,” says Andy Taylor, UK Marketing Manager for Engineered Solutions at Dräger. Cleaning equipment is just one of many ways fire departments can address the health challenges for firefighters. Departments depend on regulations and policies designed to ensure the highest degrees of personal health and safety. For departments, prevention and reduction of accidents, injuries and occupational illnesses should be a way of life. The ‘Health for the Firefighter’ campaign can serve as a reminder of the importance of creating a culture of good health for firefighters.

Training For The Future Of Our Firefighters
Training For The Future Of Our Firefighters

The importance of firefighter health has received increased media attention in recent times, and rightly so. Following Covid-19 more emphasis is now being placed on hygiene and disinfection, which I believe will be one positive outcome of this pandemic.  A significant cultural change has been a long time coming to take us away from firefighters wearing dirty kit as a badge of honor that proves their hard work and value, to understanding that clean and well maintained kit supported by detailed and robust hygiene processes that mitigate every contact with contaminants are essential.   Firefighters’ exposure to carcinogens Prior to Covid-19, the media were also reporting more regularly on the very real issue of firefighters’ exposure to carcinogens, an issue when embedded in equipment and absorbed.  Cancer has been highlighted in some scientific reports to be the leading cause of death among firefighters, with the International Association of Firefighters (IAFF) reporting that cancer caused nearly two out of three (61%) firefighter line-of-duty deaths between 2002 and 2017. The National Institute for Occupational Health and Safety (NIOSH) also found that in the US, firefighters had a 14 percent higher chance of dying of cancer compared to the general population. The results of these reports need to be underpinned by robust medical research to reflect the landscape, culture, current standards and operational practices for Fire Services in the UK.    Cancer caused nearly two out of three (61%) firefighter line-of-duty deaths between 2002 and 2017 While these shocking statistics are relatively well known, not enough has been done to force a change. Manufacturers of medical and safety technology products have a responsibility to innovate solutions that support change. To this end, Dräger’s Health for the Firefighter campaign complements our training programmes and communicates the importance of detailed hygiene processes; from the handling and storage of masks and breathing apparatus equipment through to the subsequent cleaning of the kit after an incident has occurred. Training is the first and crucial step in guiding a cultural shift, and ultimately protecting the health and well-being of our firefighters.   Using technology, research and innovation It’s important that training programmes reflect the fact that fire services are the experts – they have the experience and understand what solutions are practical. It is therefore our role to use technology, research and innovation to ensure we work together as partners with applied training helping to create a robust consistency in approach as well as providing a safe environment to train.  Dräger’s training is typically split into three areas:   Training systems - these encompass mobile or fixed training facilities that enable state-of-the-art training so firefighters can experience real fires or extrication scenarios in a safe environment including compartment fire behavior training (CFBT). At Dräger they include a vast portfolio of potential fire and rescue environments, including petrochemical plants, hospitals, schools, high-rise buildings, vehicles, aircraft and subway stations; Technical training - providing comprehensive know-how on the maintenance and repair of equipment – from mechanical and electronic components through to cleaning and disinfection;   Fitness training – providing equipment to help ensure that firefighters are prepared for the physical challenges that come with the job and can be tested and monitored to improve their safety.  The science and behavior of a fire and its contaminants Training has come a long way from when it centred simply around exposure to hot temperatures often referred to as ‘burn to learn’. It is now about much more than protecting a firefighter from becoming burnt, but rather teaching the science and behavior of a fire and its contaminants, not only to support fire and rescue operations, but also to protect the firefighter’s own health.  While Covid-19 is driving improvements in this regard, what is more difficult is helping fire services to realize that technical training on the cleaning and hygiene processes related to kit is just as important to firefighter health.   Consistent and robust hygiene processes are also about technology. While manual cleaning of equipment is still generally the norm, there are many fire services that are moving towards mechanical washing systems, which provide complete consistency in washing temperatures, the amount of detergent used, speed and temperature of drying – which can all work together to disinfect contaminants and to protect the longevity of the kit.   Training and support around these systems encompasses the entire purchasing and use life cycle; from helping to build business cases for procurement and logistical installation support, to advice on the exact processes a firefighter should take when leaving a scene and returning to the station. Support also encompasses the ongoing maintenance of equipment and the quantity of stock required.  An international look at hygiene and infection control Consistent and robust hygiene processes are also about technology Despite such advances, the UK is still behind other countries in terms of our hygiene and infection control practices. Netherlands and Sweden, for example, are two European countries leading the way in shifting the mindset and using mechanical washing equipment supported by improved logistics for managing and tracking PPE and RPE more widely. For these countries, stringent hygiene practices are commonplace and are not just about fighting cancer or the current pandemic, but also about protecting firefighters and support staff from more day-to-day illnesses such as flu, common colds, cold sores and other communicable illnesses.   Within Dräger, my role includes advising on these best-practice examples and new equipment technologies – working with our UK-based manufacturing facility and R&D departments to ensure they are designed with the firefighter in mind, and working with Fire Services, Government and other key stakeholders to help drive improvements to further protect our crews. Having manufactured advanced technology solutions for the Fire Services for more than 115 years, Dräger has the experience and technological know-how to support this necessary change in how we think about equipment, its cleaning, and ultimately how to apply technology and training to make our firefighters safer. 

vfd