Vehicles - Expert Commentary

Aviation Incidents: A Look at Local Authority Fire Service Response
Aviation Incidents: A Look at Local Authority Fire Service Response

One if the few bonuses of the 2020 COVID-19 Lockdown in the UK was the dramatic reduction of aircraft noise around our homes. Certainly in the Southeast of England, it gave us some thought as to the number of aircraft in the sky, and what the consequences might be if something went wrong… Aviation in the UK is split between what is known as Commercial Airport Transport (CAT) and General Aviation (GA). The CAT sector operates out of 25 airports and accounts for around 900 aircraft. However, the GA sector accounts for 15,000 aircraft, flown by 32,000 pilots, operating out of 125 aerodromes licensed by the Civil Aviation Authority (CAA) and over 1,000 other flying sites (According to the General Aviation Awareness Council – our mapping data suggested 1650 sites) (1,2). Roughly 96% of the aircraft in the UK are engaged in General Aviation, engaged in business, leisure engineering and training activities, and HM Government estimate that the sector employs around 38,000 people (3). Each licensed airfield has its own firefighting response, termed airport rescue and firefighting services (RFFS) governed by the CAA guidelines and they are required to be:- .. proportionate to the aircraft operations and other activities taking place at the aerodrome; Provide for the coordination of appropriate organizations to respond to an emergency at the aerodrome or in its surroundings; Contain procedures for testing the adequacy of the plan, and for reviewing the results in order to improve its effectiveness. (CAA 2020) Ensuring Adequate firefighter training So simply put, each airfield needs to ensure it has adequate training, media, personnel in appropriate quantities to deal with any likely incident, given its size and traffic. There are around 1654 airfields in the UK, with 125 of those being licensed However, this is only limited to licensed airfields and the response is typically limited to the airfield itself, and the immediate surrounding area. Airfield vehicles are often specialist aviation firefighting vehicles – not necessarily suitable for driving potentially long distances to an incident. Even so, it is a well-established principle that RRFS would only fight the initial stages of any fire, to be relieved by, and with command passed to local authority fire services. There are around 1654 airfields in the UK, with 125 of those being licensed. In 2019-2020 (to date) there have been 62 air crashes, of which 9 involved a fatality. If we plot the locations of all airfields of any type, all the licensed airfields and the crashes, we can see the spatial relationship between them. Below, we see the two distributions – on the left, crashes versus all airfields and on the right crashes versus licensed fields. It’s clear that the crosses (crashes) and dots (fields) are not always in the same place, so clearly there is a potential problem here – namely the specialized airfield fire response is unlikely to be able to respond. Using the spatial analytical capability of QGIS, the open-source GIS software, we can then start to look at the distances from the airfields of the crashes. We can see that (based on the 2019-2020 data) that on average a crash occurs 3.22km from an airfield, but 15.78km from a licensed airfield (where the firefighting teams are). The maximum distance from a licensed airfield was 57.41km, two thirds of the crashes were more than 10km from a licensed airfield and over a third were more than 18km away. Fig 1a (left) shows crashes versus all airfields. Fig 1b (right) shows crashes versus licensed airfields only. Aircraft incidents pose complex firefighting challenges So, what does this all mean? Well the simple conclusion we can draw from this data is that there is a sizable risk of an aircrash occurring on the grounds of a non-airport fire service. In 2019-2020 there have been 62 air crashes, of which 9 involved a fatality Bearing that in mind, it’s also worth considering that aircraft incidents pose challenges to firefighters and firefighting, that need to be considered. The construction of aircraft has been evolving since the first days of flight, with materials that are strong, light and cheap to produce being adopted and in recent years created to order. This has seen a move from natural materials, such as wood and canvas towards aluminum and man-made materials, and in recent years man made mineral fibres (MMMFs) which are lighter and stronger than natural materials, and can be moulded into any shape. The problem is, MMMFs disintegrate into minuscule fibres when subject to impact or fire, which can stick like tiny needles into firefighters’ skin, leading to skin conditions, and pose a significant risk to respiratory systems if breathed in. As with all fires, there are risks associated with smoke products, with exposure to fuels and other chemicals and so there is the potential for a widespread hazmat incident, with respiratory and contamination hazards. Finally, there is always the risk, more so perhaps with military aircraft, of explosives or dangerous cargoes on the aircraft that put firefighters at risk. The problem is therefore this: There is a constant, but small, chance of an aviation incident occurring away from an airport, and requiring local authority fire services to act as the initial response agency, rather than a relieving agency. These incidents, when they do occur, are likely to be unfamiliar to responding crews, yet also present risks that need to be addressed. PLANE Thinking Despite this landscape of complex risk and inconsistent response coverage non-airfield fire services can still create an effective response structure in the event of an aviation incident away from an airfield. We have drawn up a simple, 5-step aide-memoire for structuring a response, following the acronym PLANE (Plan, Learn, Adapt, Nurture, Evolve). We are aware that all brigades will do this already to some extent (in fact they are obliged to). We are also aware that there was little point going into the technical details of firefighting itself – that is handled elsewhere and in far more detail – but instead we considered a broad, high-level system to act as a quick sanity check on the response measures already in place. There is always the risk, more so perhaps with military aircraft, of explosives or dangerous cargoes on the aircraft that put firefighters at risk In many ways this mirrors existing operational risk exercises, and begins with a planning process – considering the nature of risk in the response area, building links with other agencies and operators, and collating and analyzing intelligence. Services should expand their levels of knowledge (Learn) around the issue, and consider appointing tactical advisors for aviation incidents and using exercises and training programs to test and enhance response. Having identified the risk landscape, and invested in intelligence about it, we may then need to consider adapting our approaches to make sure we are ready to respond, and having carried out all of this activity, we need to keep the momentum going, and continue to nurture those relationships, and that expertise cross the service. Rapid technological advancement Aviation technology does not stand still. Many of us will have seen this week the testing in the lake district of the emergency response jetpack (4), and this is just one example of the pace of technological advances in the sector. Consider the huge emerging market of UAVs, commercially and recreationally and the potential for incidents related to them, as well as their potential application in responses. Finally, Services, potentially through their dedicated TacAd roles, need to keep abreast of emerging technologies, and ensure that the Planning and Learning continues to match the risk. Aviation technology does not stand still So, in conclusion, we have a (very) simple system for preparing for the potential for airline incidents off airfields. We are happy to admit that it’s not going to solve all of every brigades’ problems, and we’d like to think it simply holds a mirror to existing activities. We do hope that it does give a bit of structure to the consideration a potentially complex process, and that it is of some use, if only as a talking point. Best practices and technologies and will be among the topics discussed at the Aerial Firefighting Europe Conference, taking place in Nîmes, France on 27 – 28 April 2021. The biennial event provides a platform for over 600 international aerial firefighting professionals to discuss the ever-increasing challenges faced by the industry.   References 1. General Aviation Awareness Council. Fact Sheet 1 - What is General Aviation (GA)? 2008. 2. Anon. UK Airfields KML. google maps. 2020. 3. Davies B. General Aviation Strategic Network Recommendations. GA Champion, 2018. 4. Barbour S. Jet suit paramedic tested in the Lake District “could save lives.” BBC News. 2020. Article Written by Chris Heywood and Dr Ian Greatbatch.

Fire Fleets Switch Gears To Fully Automatic Transmissions
Fire Fleets Switch Gears To Fully Automatic Transmissions

For those responsible for procuring and managing fire vehicle fleets, speed, driveability and reliability are paramount concerns. As well as the ability to accelerate, slow and stop rapidly and safely in city traffic, fire engines need to be highly manoeuvrable in tight spaces or on rough terrain. They are required to access many different types of environment at high speed, and, even more than other types of heavy-duty vehicles driven at slower speeds by professional lorry drivers, they need to be easy to operate. At the same time, vehicles are needed that are large and powerful enough to carry fire crews, heavy specialist equipment and large quantities of water or foam. They must also provide a smooth ride, for when crews are wearing bulky items such as masks and oxygen tanks. And they have to be extremely reliable, as breakdowns can cause loss of life. In recent years, manufacturers have generally preferred to specify fully automatic transmissions For all these reasons, fully automatic transmissions are now specified on most European fire vehicles, particularly in Germany, France, Spain and the UK. Compared to manuals, they can offer up to 35% quicker acceleration, with more torque at launch as well as no power interruption during gear changes upwards or downwards, enabling quick deceleration of the vehicle and bringing appliance to a complete stop when combined with an Allison Transmission retarder. That all adds up to faster response times and better manoeuvrability on crowded city streets. Automatics are also far more reliable and durable than manual or automated manual gear boxes, which are prone to wear and tear, particularly on the clutch. A key benefit that most automatics offer is a torque converter, which eliminates the need for a clutch altogether. automatic transmissions Compared to manuals, they [fully automatic transmissions] can offer up to 35% quicker acceleration This was the rationale for the specification of Allison automatic transmissions on London Fire Brigade’s latest Mercedes-Benz Atego and Scania trucks. “The Allison [automatic] transmission was specified partly because of its responsiveness and controllability, and partly because it has proven itself to be such a reliable solution for LFB’s operations,” Neil Corcoran, engineering and technical manager at Babcock International Group, which manages and maintains the LFB fleet, told us." We have seen for ourselves that the Allison has minimal maintenance requirements. And, of course, the dependability of equipment is essential in emergency services.” Allison has a dominant position in the European fire sector, where it has spent decades designing and building fully automatic transmissions that perform at their best in critical situations and offer vital benefits not provided by manual or automated manual transmissions (AMTs). This is particularly true in airport fleets, where vehicle response times are dictated by legislation. London Fire Brigade has a large number of Mercedes-Benz Atego fire trucks, all equipped with Allison transmissions Cleaner fuels In recent years, manufacturers have generally preferred to specify fully automatic transmissions. This continues to be true now when, in common with other commercial vehicle markets, they are looking at alternatives to diesel fuel, such as compressed natural gas (CNG) or liquefied natural gas (LNG), to reduce emissions in the medium to long term, particularly in urban areas. Automatics are far more reliable and durable than manual or automated manual gear boxes, which are prone to wear and tear Automatics tend to be well suited to both compressed and liquefied natural gas engines because the torque interrupts that occur with manual and automated manual transmissions during gear shifts are more volatile and less predictable in the case of spark-ignited CNG and LPG engines. Automatics, by contrast, can provide a smooth transfer of power to the drive wheels and maximum efficiency between engine and transmission, resulting in better performance, manoeuvrability, safety and driver comfort, as well as a significant reduction in noise. In 2019, German fire engine manufacturer Magirus revealed the world's first compressed natural gas (CNG)-powered firefighting vehicle in series production. Part of the company’s 'Innovative Drive Line (iDL)' series, the (H) LF 10 fire engine has an Iveco Eurocargo 4x2 chassis with 420 litres of CNG and a fully automatic Allison transmission. It has a range of up to 300 km or pump operation of up to four hours. Speed and power for forest fire vehicles Automatic gears are also increasingly specified on 4x4 vehicles used to tackle forest fires as they outperform AMTs in extreme conditions. Forest firefighting vehicles need to be able to carry powerful, high-capacity pumps and canons as well as very large quantities of water or other extinguishing media. And they must be able to travel rapidly over large distances and very rough and steep terrain, in extreme heat. AMTs and manual transmissions cannot cope well with these conditions. An example of a newly launched automatic forest firefighting vehicle is the Spanish-made UROVESA K6 IS, which is equipped with the Allison 3000 Series™ transmission. It features a chassis with a maximum gross vehicle weight (GVW) of 16 metric tonnes, excellent traction and extremely robust parts. According to UROVESA's President and CEO Justo Sierra, the automatic transmission, combined with an independent suspension system, affords greater guarantees of safety and efficiency than other vehicles and is in great demand for forest firefighting applications because it can travel at twice the speed of conventional 4x4 trucks. "These transmissions facilitate driving, prevent gear shift errors, enable both hands to be on the wheel at all times and enhance driver ergonomics and safety," explained Sierra. The UROVESA K6 IS forest firefighting vehicle, made in Spain, equipped with a fully automatic transmission. It can travel at twice the speed of conventional 4x4 trucks combating vehicle rollback There are a number of ways in which automatics help reduce accidents and improve driver awareness, comfort and safety, from combating vehicle rollback – a major concern with manual transmissions – to providing superior vehicle control and manoeuvrability at low speeds. Furthermore, because the engine’s responses are so closely related to what the driver asks of it, the vehicle’s start-up progress is more predictable to cyclists and pedestrians who might otherwise misinterpret a slow start as an intention to remain stationary. Electronic features like putting the transmission into neutral when leaving the cab or safety interlocking with body equipment further reduce the risk of accidents. Built to last Fire vehicles tend to be in use for only a few hours each week, with low mileage. Consequently, they can be operational for up to 25 or 30 years. So it's even more important for fleet buyers that they get specifications right, to ensure their vehicles will pass the test of time and provide the performance they need for decades. That's one more reason why so many continue to opt for Allison planetary automatics.

Optimize Your Firefighter Training Program
Optimize Your Firefighter Training Program

Want to know an easy way to judge the quality of a fire department? Look at how much they train. Career, volunteer or combination, fire departments become successful through training. Yet all training is not equal. Focus too much on hands-on training (HOT) and you could be missing important legal and compliance updates. Lean heavily on web-based training and you may fail to identify shortcomings in skills proficiencies. Keep students confined to a classroom and you may lose their interest quickly. Not surprisingly, a balance of all three types of training is needed to produce competent, empowered firefighters. For this article, I was challenged to think about what’s missing from our current fire training programs. As I thought about the varied way we approach fire training, three issues jumped out at me. Base training on facts and statistics Take advantage of new technologies Incorporate policy into your training   Your training program should also be strong in the types of calls you respond to most Base Training On Facts And Statistics If your department has a robust training program, outlined by a calendar of various topics and employing a mix of HOT, online and classroom training, you’re ahead of the curve. But even in departments with well-developed training programs, training is often based on preference or habit, not data. Think about the topics in your training program. Do you know why they’re included? Do they match your call make-up? Are they targeting specific skill shortcomings? (And yes, we all have them!)What’s missing from many fire department training programs is a detailed needs assessment What’s missing from many fire department training programs is a detailed needs assessment that in turn establishes a factual basis for the year’s training topics. The needs assessment should include: Surveying the members to determine the types of training they want or feel they need. Measuring firefighter proficiency on basic tasks, such as NFPA 1403 drills, NFPA 1710 drills and EMS patient assessment skills audits, to assess personnel by mandate or by industry best practice. This will identify skills deficiencies to address through training. Incorporating call volume statistics and details. A significant percentage of the calls fire departments respond to are EMS and vehicle extrication But I’d venture to guess the training programs of most departments don’t match those percentages. Yes, you need to train for the high-risk, low-frequency tasks. But your training program should also be strong in the types of calls you respond to most. Incorporating these “facts and stats” into your training program will help you keep it fresh, relevant and interesting. Firefighters can use their phones and tablets to access department training information and complete training assignments Take Advantage Of New Technologies There is something to be said for back-to-the-basics, keep-it-simple firefighter training. But it’s a mistake to ignore technological advances. From teaching safe apparatus backing procedures to practicing hoseline deployment and Vent/Enter/Isolate/Search (VEIS) tactics, instructors have more options than ever before. Some instructors regard simulators as second-rate to “the real thing.” Certainly, simulation and other forms of technology-driven instruction can’t replace the value of hands-on experience. But they can augment it in important ways. Driver simulators, for example, not only save money because apparatus don’t have to be taken out of service or sustain wear and tear; they also provide an environment where firefighters can learn without risk of injury. If sitting behind a computer isn’t your kind of thing, live-burn simulators, vehicle fire simulators and hazmat simulators are available—and they all significantly boost training efficiency.Technology will never replace hands-on instruction, but it can facilitate it But you don’t need fancy simulators to incorporate technology into your fire training program. Learning management systems (LMS) are another important tool that can increase training program efficiency. Although they’ve been around for a long time, LMS continue to improve. The ability to integrate with mobile devices is huge, allowing firefighters to use their phones and tablets to access department training information and complete training assignments. Leveraging this technology can allow you to more efficiently manage information, schedule training and free up valuable time needed for other important tasks. If you’ve attended some of the larger regional or national fire conferences recently, you may have had the opportunity to see audience response technology in action. By capturing the firefighters’ responses to questions in real-time, instructors can adjust the material to reflect students’ knowledge level. Audience response is also simply a great way to keep firefighters engaged. Technology will never replace hands-on instruction, but it can facilitate it. If you’re using training methods that haven’t changed in decades, something’s missing from your training program.   Without incorporating policy into your training, you’re only giving your firefighters half the equation Incorporate Policy Into Your Training I saved the biggest and best for last. When I work with fire departments across the country, I repeatedly discover the failure to incorporate policy into training. Think about it: Training curricula are almost always designed around procedures—the how of doing something. But isn’t the why just as important? And that’s what policy is all about. Without incorporating policy into your training, you’re only giving your firefighters half the equation.Inevitably firefighters will encounter times when following the procedure isn’t possible Inevitably firefighters will encounter times when following the procedure isn’t possible. That’s when policy training kicks in—firefighters understand the fundamental objective, and they can think on their feet about how to achieve it. Training on policy also helps departments address the issues that so often get firefighters into trouble. How many of your firefighters really understand your department’s social media policy? What about the rules surrounding sick time usage? These are things that trip up firefighters time and time again. If you’re not training on policies, it’s unlikely firefighters remember them. How many of your firefighters really understand your department’s social media policy? In addition, normalization of deviance is a risk to every organization. When personnel fail to follow policies and no negative repercussions result, it can quickly establish a new normal. Policy-based training resets the “normal” and makes sure that members of the organization comply with the policy and not what they think the policy says.Most line-of-duty death reports cite failure to comply with policy or lack of adequate policy Fire instructors often avoid training on policy because they regard it as boring or unrelated to what really matters—firefighter safety and survival. Yet most line-of-duty death reports cite failure to comply with policy or lack of adequate policy as contributing factors in the incident. If you’re worried that policy will make your training program dry and uninteresting, link it to real-world events. An online search provides lots of examples of when things went wrong and how adherence to policy might have produced a different outcome. And limit policy training to small chunks. Take out a 10-page policy and go through it line by line, and your students’ eyes will glaze over in seconds. Instead, look for ways to enrich your current training by bringing relevant pieces of policy into it. Your firefighters will be learning the department’s policies without even realizing it! Focus On Continuous Improvement Fire chiefs and fire instructors have a challenging job. Budgets are tight, and training is often one of the first things to be cut. Yet we need firefighters to be proficient in all-hazards response. Every department has a long training wish list. But if we focus on continuous quality improvement, we can get a little better each year. Looking for opportunities to incorporate statistics, technology and policy into our training is a good place to start.

Latest Oshkosh Corp. news

Greek Armed Forces To Release Tender Order To Replace Two Historic Vehicles In Their Fleet
Greek Armed Forces To Release Tender Order To Replace Two Historic Vehicles In Their Fleet

The decision to replace two historic vehicles of the Greek Armed Forces, the Stagier trucks and the jeeps of the Mercedes-Benz GD, through a tender whose first part is estimated to have a budget of 550 million euros, mobilizes all major automakers active in defense, but also a number of companies specializing in the equipment of such vehicles. Replacing historic vehicles Some unofficial presentations have already been made in Athens, Greence by foreign groups According to information, some unofficial presentations have already been made in Athens, Greence by foreign groups, while the competent services of the Ministry of National Defense are working feverishly on the specifications of the vehicles and the other parameters of the tender. The tender will certainly be a bidding, but it has not yet been clarified the number of vehicles and the exact types of vehicles that will be requested by the Armed Forces. Restarting Hellenic Vehicle Industry (ELVO) This specific supply order, however, is of additional interest, because it is expected to be the first act of restarting the Greek defense industry and especially, the Hellenic Vehicle Industry (ELVO), which after the end of the relevant tender is for sale in the form of Israeli interests. ELVO estimates that it can be the factory in which a growing part of the assembly of those vehicles that the country will eventually choose will be carried out gradually. However, the Israeli industry, Plasan, which has the same vehicle with which it may participate in the tender, also participates in the scheme that acquires ELVO. In fact, a few days ago, the Minister of National Defense, Nikos Panagiotopoulos, speaking in Parliament, explained, “ELVO after the multi-year liquidation regime has become a legal buyer and can therefore, participate in any tender procedures for the supply of weapons benefits of the Armed Forces, if a specific requirement is expressed and in accordance with the current institutional framework.” Interest in tender from European defense companies Of course, the Plasan Israelis are not the only claimants. Italian, German, French and American companies will also take part in the competition, when it is announced. Those who follow the relevant developments closely consider the expression of interest from Mercedes-Benz Defense Vehicles certain. After all, even if Mercedes-Benz vehicle will not be selected, it is possible that its engines will be used, the same sources explain. Another German company that is expected to be interested is Rheinmetall. US firms for fire safety and military trucks From the United States, Oshkosh Corporation, formerly Oshkosh Truck, is reportedly already interested From the United States, Oshkosh Corporation, formerly Oshkosh Truck, is reportedly already interested in an industry that designs and manufactures special trucks, military vehicles, truck bodies, airport fire extinguishers, and related equipment. From Italy, Iveco Defense Vehicles, which belongs to the Anielli Group and is based in Bolzano, Northern Italy, at the same facility as Lancia’s original location, is expected to be a strong candidate. It is a globally renowned manufacturer of military vehicles that was founded in 1937 and later became a member of the Iveco Group in 1975. Iveco Defense Vehicles recently managed to get a contract from France, to the surprise of many. Joint Ventures likely to pitch for tender This apart, The Renault Trucks Defense has also shown interest in the tender offer. Renault Trucks Defense division is wholly owned by Renault Trucks, which in turn is owned by the Volvo Group, which is no longer associated with the passenger cars of the same name, which have been controlled by Chinese interests. The interest of MAN Group is also expected, while until the tender is announced, it is estimated that other groups may appear and later joint ventures may be formed.

Charleston Fire Department Equips With Second Ascendant 100’ Heavy-Duty Aerial Tower From Pierce Manufacturing Inc.
Charleston Fire Department Equips With Second Ascendant 100’ Heavy-Duty Aerial Tower From Pierce Manufacturing Inc.

Pierce Manufacturing Inc., an Oshkosh Corporation company, announced that it has secured an order for an Ascendant 100’ Heavy-Duty Aerial Tower built on an Arrow XT custom chassis. Sold through Pierce Manufacturing’s dealer, Spartan Fire and Emergency Apparatus, Charleston’s second mid-mount tower order for the fire department follows a previous delivery of the same apparatus in September 2019. Ascendant 100’ Heavy-Duty Aerial Tower The Charleston Fire Department’s relationship with Spartan Fire and Emergency dates back to 1983" “The Charleston Fire Department’s relationship with Spartan Fire and Emergency dates back to 1983, when we purchased our first Pierce engine,” said Joseph Roberts, Assistant Fire Chief for Charleston Fire Department. Joey adds, “One attribute we look forward to most with the purchase of our second Ascendant Tower is having an identical apparatus to replace a remounted tower. Additionally, the overall length of the apparatus, storefront operation without extending the aerial and low travel height work well when navigating Charleston’s narrow streets and low tree canopies.” Superior drivability, maneuverability and serviceability Since its introduction by Pierce Manucaturing Inc., in 2018, the 100’ Heavy-Duty Aerial Tower offers superior drivability, maneuverability, operator functionality, and serviceability. Other key features of Charleston Fire Department’s aerial tower include: Mid-mount platform configuration Detroit DD13 525 HP Diesel Engine Allison EVS 4500 Transmission Total length of 42’ and low overall height of 10’ 10” 45-degree cramp angle Basket accessible from ground at full retraction 50-degrees below grade scrub area 20’ set back allows set-up in just 28’ of roadway Integrated ground pads for rapid set-up 254 cubic feet of compartmentalization and 179’ of ground ladders Side-roll protection Compact design and minimal set-up The Aerial Tower provides Charleston Fire Department with an unmatched compact design The new Ascendant 100’ Heavy-Duty Aerial Tower provides Charleston Fire Department with an unmatched compact design and minimal set-up and space requirements. “Our team is grateful to once again support the incredible work of the Charleston Fire Department with the selection of fire apparatus that we know will best meet their needs,” said Alan Axson, Sales Representative for Spartan Fire and Emergency Apparatus. Alan adds, “With many challenges to consider, we worked collaboratively to find the right apparatus designed for operation in tight and narrow confines. This new apparatus supports a growing fleet of Pierce apparatus within the department and adds to its strategic response capabilities.” Charleston Fire Department The Charleston Fire Department serves a growing, thriving, and historic port city. The department includes four battalions from 17 fire stations with 359 personnel that conduct nearly 20,000 service calls per year across a 134 square-mile radius. Known for its charming, historic architecture, cobblestone streets, and beautiful oak tree-lined neighborhoods, Charleston required an apparatus that will maneuver easily through narrow roadways with a tight turning radius, with minimal rear body swing.

Pierce Manufacturing Secures An Order Of Enforcer Pumpers And Ascendant Ladder From The Hall County Fire Services
Pierce Manufacturing Secures An Order Of Enforcer Pumpers And Ascendant Ladder From The Hall County Fire Services

Pierce Manufacturing Inc., an Oshkosh Corporation company, has secured an order from Hall County Fire Services in Georgia. Sold through Pierce dealer, Ten-8 Fire Equipment, the order includes eight Pierce® Enforcer™ Pumpers and one Ascendant® 107’ Heavy-Duty Aerial Ladder. The new fire apparatus will support the department’s efforts to standardize its fleet to allow personnel consistency in their response and service delivery. Excellent customer service “Our fire department covers 429 square miles with diverse response districts from rural to suburban,” said Christopher Armstrong, Fire Chief of Hall County Fire Services. “We respond to a variety of hazards, and standardization and continuity in our operations are crucial to fulfilling our mission. Both the excellent customer service provided by Ten-8 Fire Equipment and the quality of Pierce apparatus contributed to our decision to execute this significant order.” Hall County Fire Services’ new fire apparatus will feature: Pierce Enforcer Pumpers Extended cab and raised roof 750-gallon tank with low hose bed 1500 GPM Waterous Pump Detroit Diesel DD13 525 HP Engine TAK-4® Independent Suspension Side roll and frontal impact protection Multiplex electrical system with Command Zone screen Additional storage cabinetry for EMS equipment Ascendant 107’ Heavy-Duty Aerial Ladder Enforcer chassis with extended cab and raised roof 500-gallon tank 2000 GPM Waterous Pump Detroit Diesel DD13 525 HP Engine TAK-4 Independent Suspension Side roll and frontal impact protection Multiplex electrical system with Command Zone screen Single rear axle configuration Additional storage cabinetry for EMS equipment and extrication tools Essential safety features “Our team is honored that our longstanding relationship with Hall County Fire Services continues with an order of such magnitude for their community,” said Guy Binion, sales representative for Ten-8 Fire Equipment. “The eight pumpers and aerial ladder offer the desired level of standardization of apparatus operation, training, and vehicle maintenance, as well as superior maneuverability, innovative design, and essential safety features. We are confident the new fire trucks are the optimal choice for department’s response area.” Hall County Fire Services’ new fire apparatus will support the work of 369 personnel, 16 stations, and an annual service call volume of over 25,000 per year. Delivery of the eight pumpers and the aerial ladder is expected to take place in December 2020.

vfd