Viessmann introduced the next-generation of its most popular gas-condensing boiler, the Vitodens 100-W, with industry-leading capabilities for installers. The WiFi-integrated Vitodens 100-W’s new control platform makes commissioning and servicing the boiler easier. It is possible to monitor and make adjustments to customers’ boilers remotely. No third-party controls are required; meaning a Vitodens boiler with ViCare Thermostat provides homeowners with a load-compensating smartphone-controlled heating system.

Vitodens 100-W Design

The mechanical design of the Vitodens 100-W has reduced the number of spare parts typically needed for routine maintenance by about 50%, meaning Viessmann installers should be able to carry less stock. At the same time as the new-generation Vitodens 100-W series goes on sale, Viessmann will also launch the new Vitodens 111-W wall-mounted combi boiler.

Intended for family homes where there is high hot water demand, the 111-W features a cylinder loading system and a 46-liter integrated stainless steel storage tank, allowing it to provide a flow rate of up to 181 liters in 10 minutes. The unrestricted flow rate makes it ideal for multi-point of use, e.g. shower and a bath or basin.  All models are hydrogen-ready, certified for a 20% hydrogen blend.

Vitodens 100-W Highlights

Vitodens 100-W series is perfectly suited to a much broader range of homes and ideal for installers searching for boilers

Compact, quiet, and affordable, with outputs ranging from 3.2 kW to 32 kW (and with an 11 kW version now added to the range), the Vitodens 100-W series is perfectly suited to a much broader range of homes and ideal for installers searching for boilers to match heat loss calculations. Viessmann has given its best-seller class-leading capabilities by adopting technologies and features from its most advanced gas-condensing boiler, the Vitodens 200-W.

  • Outputs from 3.2 kW to 32 kW
  • Available as a system boiler (11, 19, 25, and 32 kW), combi boiler (26, 30, and 32 kW), and 111-W storage combi (25 and 32 kW)
  • ViStart app for easy installation and fully-guided commissioning process
  • New Lambda Pro automatic combustion control for maximum efficiency at all times
  • Vitoguide functionality gives engineers remote access; customer interface is via ViCare app
  • Service Assistant servicing tool
  • Fewer parts need to be carried for routine maintenance
  • New MatriX-Plus burner extends service life and reduces CO2 and NOx emissions
  • Long-lasting and efficient Inox-Radial heat exchangers
  • Modulation range increases from 1:4 and 1:6 to 1:10 (3.2 kW)
  • Ready for 20% hydrogen mix in the gas supply

The new Vitodens 100-W boiler, with its completely new control platform, is the most up-to-date specification on the market. With WiFi inside the boiler, it is a truly smart machine, enabling live interfaces and full control for both the installer and end-user. All this functionality is free and included in the boiler,” says Graham Russell, managing director at Viessmann UK.

Vitoguide app

Vitoguide shows engineers the status of their customers’ systems at a glance and gives access to current operating data

The Vitodens 100-W’s control platform is visible inside the Vitoguide software, as previously seen on the premium Vitodens 200-W boiler. By making it possible for the engineer to monitor and adjust the system online, shortens service processes, reduces operating costs, professionalizes the engineer’s customer service, and strengthens customer loyalty.

Simply put, it is the most important tool in the installer’s kit. Vitoguide shows engineers the status of their customers’ systems at a glance and gives access to current operating data. It’s possible to see fault messages instantly and to call up spare parts and availability. Automated notifications keep the installer notified even when the Vitoguide software is closed. This allows the installer to respond to any issues promptly, by making remote parameter adjustments, for example.

Vitoguide prevents errors

The Vitoguide app helps ensure that boiler commissioning can be completed perfectly every time. (The commissioning assistant function, previously called ViStart, will be familiar to installers of the Vitodens 200-W model). The app automatically establishes a connection with the boiler – without necessitating connection to the homeowner’s internet router – as soon as its integrated Wi-Fi access point has been activated. The app’s step-by-step guide covers time programs, heating circuits, heating curves, DHW, and the circulation pump. When commissioning is complete, it generates a final completion report.

One particularly helpful feature of the Vitoguide app helps prevent common errors or oversights during filling and venting. After the boiler has been filled, the app gives a read-out of the system’s water pressure, and if this is acceptable, the app’s venting mode shifts the diverter valve backward and forwards, periodically turning the pump on and off, to remove air from the system.

ViCare app

The ViCare control system app, available for both iOS and Android devices, is a feature that end-users will really appreciate. In conjunction with the battery-powered, RF-connected ViCare Thermostat, this allows the heating system to be operated not only on the boiler’s large seven-inch color touch display but also via smartphone or tablet. Set up in this way, end-users will have access to a complete set of ViCare app convenience features, which include:

  • Information on the current operating status
  • Quick adjustments to the heating system
  • Time programs for heating and hot water, by zone
  • Compliance with Boiler Plus requirements

MatriX-Plus burner 

For better efficiency and environmental-friendliness, the new-generation Vitodens 100-W employs a new MatriX-Plus burner and new Lambda Pro automatic combustion control. These technologies ensure low fuel consumption with low NOx and CO2 emissions.

The MatriX-Plus burner’s stainless steel MatriX perforation ensures a long service life. With the 100-W’s modulation range increased to up to 1:10 (32 kW), and with optimal flame stability, the burner precisely meets heat output requirements with a minimal number of start-ups and cycles.

Lambda Pro combustion control

Lambda Pro ensures reliable and clean operation even when gas quality fluctuates by detecting and adjusting to the gas type. This eliminates the traditional need for adjustment during installation and ensures constant efficiency and thus reduced wear and tear on components.

Lambda Pro also ensures the boiler will continue to operate reliably and efficiently if, as seems possible in the future, the UK gas grid supplies a blend comprised of 80% natural gas and 20% hydrogen. The controls also regulate mains voltage fluctuations. 

Two further versions of the Vitodens range will be introduced by September, in time for the 2021/2022 heating season: a heat-only 100-W, and the new Vitodens 050-W.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

What Impact Has COVID-19 Had On The Fire Industry?
What Impact Has COVID-19 Had On The Fire Industry?

The COVID-19 pandemic has had ramifications for almost every industry, some more than others. With the pandemic stretching well into a second year, the non-medical consequences continue, and many are wondering about which of the required changes might become permanent. As regards the fire sector, we asked our Expert Panel Roundtable: What impact has COVID-19 had on the fire industry?

Keeping The Fires Out And The Lights On
Keeping The Fires Out And The Lights On

The UK’s demand for sustainable heat and power sources is increasing rapidly. This is seeing a growing dependence on renewable energy sources for electricity, and, as we’re facing a landscape of constrained power generation, consistency of this power source is becoming a key concern. Fire is an evolving risk for power stations. It can cause prolonged outages, which are damaging to sites’ personnel, equipment, and fuels. However, these fires are very common. James Mountain, Sales, and Marketing Director, Fire Shield Systems, looks at the current system underlying fire safety for power stations, exploring why a new approach is needed.   Traditional Fire Safety guidance  Over the past ten years, The National Fire Protection Association’s NFPA 850 Recommended practice for electric generating plants and high voltage direct current converter stations has been seen as the exemplar internationally for fire safety at power generation sites. These recommendations sit alongside a complex mix of regulations managing the fire protection across sites that create power from combustible feedstocks. Those feedstocks can either be derived from organic sources, including wood and agriculture or refuse sources, including household waste. The exploration of alternative systems is limited, but different fuels and processes need different suppression, detection, and monitoring systems to remain effective. However, chapter nine of the guidance dedicates only four of its 70 pages to the fire risks specifically pertaining to the handling and storage of alternative fuels, a rising concern for the power generation industry. Practical experience of advising on the fire safety for sites handling these fuels has revealed a conflicting array of approaches to risk mitigation, many of which are guided by the owner, led by the insurance industry. For the insurance industry, the main concern is protecting fuels, assets, and equipment. However, insurers often rely on more traditional methods to offer that protection, such as sprinkler systems, despite these not always being suitable in protecting certain types of feedstocks. The exploration of alternative systems is limited, but different fuels and processes need different suppression, detection, and monitoring systems to remain effective. To better address, the growing challenges faced, best practice legislation and guidance for power generation sites needs to reflect real work scenarios, including the myriad incidents which have occurred throughout the past decade.   What are the risks When Dealing with alternative fuel?  When it comes to dealing with alternative fuels, storage, movement, processing, and transportation all present significant fire risks. These risks become more complex with alternative fuels compared with others as, to protect the site effectively, there’s a need to understand their unique properties, consistencies, ingress of hazardous materials, and their reactions on contact with water and foams. When it comes to dealing with alternative fuels, storage, movement, processing, and transportation all present significant fire risks The myriad risks, from carbon monoxide (CO) emissions to large explosions, are guided by an equally complicated set of fire safety guidance. Research into the safe handling and storage of these fuels, and the most suitable mitigation measures to offset the risks, is ongoing. Detecting and monitoring heat within alternative fuels when stored is also challenging, as the material is also an insulator. This means fire and heat are often difficult to identify in their early stages, prior to a blaze taking hold. Some types of alternative fuels are also prone to self-combustion if not monitored carefully. The risk of fires burning slowly within these materials is the topic of a major study from Emerging Risks from Smouldering Fires (EMRIS) between 2015 and 2020. The need for new best practice guidance in fire safety As methods for generating renewable power mature, and new technologies and research emerge, fire safety guidance needs to be updated to reflect this. This is not only a UK-wide challenge, but it’s also recognized across global and European standards. Regulations need to take into account a range of factors to ensure protection systems are effective in practice. The development of renewable power sources requires revision of fire safety guidance. Now, a decade on from when the NFPA 850 was first published, it’s time to revisit its guidance and focus on building a more resilient, fire-safe future for all of the UK’s 78 biomass and 48 waste to energy sites. This involves greater clarity pertaining to the specific risks associated with alternative fuels, such as waste and biomass-derived fuels. The approach needs to be comprehensive, looking at every aspect of designing, installing, and maintaining systems.While the power generation industry remains reliant on outdated and complex guidance, with conflicting approaches to best practice protection, the potential for systems to fail is clear. That robust approach relies on multiple stakeholders working together – including the regulators, government, academics, technology partners, and fire safety professionals. Collaboration is key to build long-term confidence in the safety of sustainable fuels in powering our homes, transport, and industries in the future.

Spot Fires Before They Start: Thermal Imaging For High-Risk Sites
Spot Fires Before They Start: Thermal Imaging For High-Risk Sites

Waste management sites are particularly vulnerable to fires, with hundreds reported every year, just in the UK. The materials stored in a waste heap make them particularly risky environments. ‘Hot spot’ fires, as they’re called, can be caused by chemical waste, flammable items, or the heat caused by the natural breakdown of organic materials.  A blaze can start quickly and without warning, building into a major issue that can threaten lives and livelihoods. And not only that - but in many cases, insurers now require sites to be putting additional updated fire prevention measures in place, in order to validate their existing policies. All this makes it more important than ever to have effective prevention and detection measures on-site, with the ability to extinguish fires swiftly should they develop. Preventing poor prevention Early detection is vital for preventing the dire consequences of a fire. The traditional approaches - manual inspection, gas detection, or basic thermal monitoring - all come with major limitations. Thermal camera prevention software can instantly detect when temperatures are outside of the normal range They all take time and, to be honest, they’re all pretty unreliable. Waste piles can often be many meters deep. When you smell the smoke or see the flames, it’s too late. The damage has already been done and by that stage, you’re long past prevention. Real prevention needs to start earlier, and deeper below the surface. It is said that necessity is the mother of all invention - and out of this need to keep sites safe comes high-resolution fire prevention thermal imaging. Thermal Cameras Thermal cameras from manufacturers such as FLIR, can constantly monitor temperatures across a site. They are highly sensitive to temperature, being accurate to within half a degree centigrade, and programmed to detect heat signatures deep below the surface. This type of prevention software can instantly detect when temperatures are outside of the normal range. A flame will develop at 122 degrees centigrade. If you can catch an elevated temperature and lower it before it reaches that stage, you can stop the fire before it even begins. Oscillating Water Cannons Should the temperature in any area rise enough to become a fire risk – typically 60 degrees centigrade or above – thermal imaging cameras can trigger an alert, informing the operator.  It can be combined with location monitoring software for fast identification of possible ‘hot spots’, and even connected to automated, oscillating water cannons which can locate and extinguish hot spots in seconds. The system will then activate a pair of automated, oscillating water cannons, spraying the affected area to reduce the temperature or extinguish the fire. Distinguish before you extinguish False alarms are a risk with thermal systems. The last thing you want is a sprinkler system going off because a camera detected the heat from a vehicle exhaust. The latest systems can be programmed to distinguish between acceptable heat signatures, such as vehicles, and genuine potential fire risks. On-site fire prevention can now be safer, more reliable, and more efficient, with fewer false alarms Solutions like this have been developed recently by UK machine vision integrator Bytronic, fire prevention imaging supplier Thermascan, and Swedish firm Termisk Systemteknik, using FLIR technology to create a reliable and automated solution to keep sites safe, with rapid detection at a temperature level. In one site, the water cannons were programmed to adjust water pressure and reach based on the location of the hot spot, before automatically deactivating once the temperature has cooled sufficiently. Meanwhile, the thermal cameras – which can detect fires even through thick smoke – monitor the progress of a fire beyond what’s visible with the naked eye. The future of fire prevention? For sites used to manual inspection and sprinkler systems, this technology could be a step-change. The old ways may have been partially effective, but were more likely to be overly sensitive and not targeted to the affected areas, taking more time and potentially causing water damage and pollution elsewhere. With newer automated, thermal imaging solutions, on-site fire prevention can now be safer, more reliable, and more efficient, with fewer false alarms. When hot spots occur, they can be swiftly extinguished with pinpoint accuracy, limiting water waste, property damage, and environmental pollution. It can mean the difference between a successful insurance payment or a significant financial hit, should the worst happen. But with the proper prevention, that worst situation may never occur.