Browse FIRE MONITORS

Monitors - Expert Commentary

Fire Protection For Paper And Pulp Plants
Fire Protection For Paper And Pulp Plants

There is a sense in some markets that the paper and pulp industry will decline owing to the digital technologies with which people interact every day. While this might be considered logical, the reality is completely different. In fact, the paper and pulp industry has experienced a steady growth and will continue to do so in 2021. Production of paper increased by more than 450% in the last decades and the demand of paperboard in the world is expected to grow significantly, driven by e-commerce and big retailers increasing their presence in the online sales universe. This sustained growth in production capacity and paper consumption presents several fire risks to companies and exposes communities that develop around paper mills, to the impact of disasters caused by these fire risks. Fire risks in the paper and pulp industry Paper and cardboard are combustible, but this is not the only fire risk found in these types of industries. Raw materials and finished goods storage are sensitive to fire. In addition, the paper making process includes several stages where fires can occur, due to hot surfaces or poor ventilation. The most relevant fire risks on a paper plant are: Storage Areas: As mentioned before, paper and cardboard are combustible. Solid paper blocks and reels have hard surfaces that don’t ignite easily, but usually these reels can suffer minor damages or have loose sheets that significantly increase the fire risk. When paper reels are stacked in columns, gaps in the center can act as chimneys and when fires start in the bottom of the stack, this chimney effect will accelerate smoke and hot air spread, increasing vertical and horizontal flame spread. Wood and Bale storage fire risks Bale storage also presents a high fire risk, as loose materials are always present Raw materials for the paper making process can have two main sources, forestry products (mainly wood) or recycled cardboard and paper. Wood storage presents several challenges, especially due to wood chips that are highly combustible and, in some cases, even explosive. Bale storage also presents a high fire risk, as loose materials are always present. Fire in baled paper is difficult to extinguish and generates heavy smoke. In many recycling facilities, these paper bales are stored outdoors, where paper or rags soaked in flammable liquids, embedded between the paper sheets, can ignite resulting in a fast spreading fire. Chemicals, flammable liquids and gases In addition, it is possible to find different types of chemicals, flammable liquids and gases that are used in the paper making process. These materials have their own fire-related risks that need to be taken in consideration. Production Areas: In pulp factories, there are several long-distance conveyors that transport wood and wood chips. These conveyors constitute a fire risk and the most probable causes of fire are bearing damage, overheating of the conveyor and igniting chips in the environment. IR dryers, a common source of fire After the wood has been transported, chipped and digested, the paper making process becomes extremely humid, due to the large amounts of hot water and steam needed. But, as soon as the pulp fiber sheet starts to dry, the hot surfaces in contact with the paper sheets can be a source of ignition. IR dryers used in the process are also a common source of fire in the paper industry. When the sheet of paper is formed, close contact with reels and bearings moving fast can create static electricity that could ignite loose paper or airborne particles. Problems like these are likely to be more extensive in tissue mills. Paper dust is generated in certain parts of the process, especially where paper shits are slit or cut. Poorly insulated steam pipes lead to fire Poorly insulated steam pipes can ignite paper dust or even their own insulation materials. In addition, paper dust gathers in the ventilation grills of machinery, causing overheating and igniting as well. Heated oil is used in several parts of the process as well and if a malfunction occurs on the Hot Oil Roll systems, leaks might occur, exposing hot surfaces to this oil and causing ignitions. A paper mill has hydraulically operated machinery, where leaks or sprays might ignite as well. Service Areas: As in many other manufacturing facilities, several service areas can be found. Electrical and network equipment rooms have an inherent fire risk due to damaged wires or equipment, overheating or short circuits in high voltage circuits. Transformer and generator areas entail fire risks as well. High fire risk for boiler rooms Flammable gas distribution systems can be ignition sources, in case of leaks or damaged pipes or valves Hot water and steam are key components for the paper making process. For this reason, paper plants use high capacity boilers that can be powered by flammable liquids or gases. A high fire risk can be considered for boiler rooms. Flammable gas distribution systems can be ignition sources, in case of leaks or damaged pipes or valves. In addition to the fire risks mentioned in these areas, many maintenance operations can also pose fire risk, especially when hot works are being performed. Sparks caused by welding or the use of certain tools can ignite paper sheets or dust in the air. Poor housekeeping and buildup of paper dust, for example, increases the risk associated with maintenance and construction works. Prevention, the first line of defense According to the Health and Safety Executive from the United Kingdom, 60% of fires on paper mills are caused by machine faults and poor housekeeping. The first line of defense to avoid fire risks in paper plants is prevention. As mentioned before, a high number of fires in these types of facilities occur because of poor housekeeping and machine malfunction. The key is to identify the risks and possible ignition sources, and apply measures to minimize them. As in many industries, fire protection has two main components: Passive and Active protection. Passive fire protection measures Passive measures include fire rated walls, ceilings, and floors in the most critical areas. Chemical storage areas should be physically separated from other dangerous areas, if this is not possible then the walls separating areas should be fire rated and materials must be stored in a way that minimizes the risk of fire spread by radiation or conduction. Proper compartmentalization and intumescent protection of structural elements should be part of the package as well. Passive measures include proper ventilation and smoke control. As mentioned before, paper dust is a major fire risk, which is why ventilation and cleaning of hoods over the paper machine is important to minimize the possibility of ignition. Fire resisting construction should be designed with the following goals in mind: Protection of escape routes Form compartments to contain fires that might occur Separate areas of higher fire risk Protect load bearing and structural members to minimize risk of collapse Sprinkler systems, gas extinguishing systems and hose reels Active fire protection includes sprinkler systems, gas extinguishing systems and hose reels to support fire brigades Active fire protection includes sprinkler systems, gas extinguishing systems and hose reels to support fire brigades. Finished goods stored indoors should be protected with sprinkler systems and the same should be considered for chemical storage areas and certain raw materials. Paper bales, ideally should be protected by sprinklers that are suitably designed to cope with the height and located, in all cases, 3 meters above the level of bales stacked vertically (which should not exceed 5 meters height). Spark detectors in hoods, pipes and ventilation systems Dangerous sparks could be generated in several parts of the paper making process, which is why spark detectors must be installed in hoods, pipes, and ventilation systems. Water spray and CO2 systems can be used to protect machinery against these risks. Means to fight fires, like extinguishers and hose reels, should be provided to support fire brigades. All the elements should be properly identified and all personnel should be trained and made aware of the location of such devices. Importance of fire alarms Fire alarms are required in all paper mills and fire alarm call points should be provided in all locations, according to international guidelines, such as NFPA 72 or EN54. The spread of flames and smoke in paper, wood and chemical storage might become extremely fast. For this reason, early detection is critical. Many technologies might be applied in the different areas of a paper plant. Nevertheless, there are dusty or humid areas where regular heat or smoke detectors might fail under certain circumstances. For these areas, especially located outdoors, innovative state-of-the-art detection solutions might be applied, like Video Fire Detection (VFD). NFPA 72 standard for flame and smoke detection NFPA 72 provides guidelines to implement this technology for flame and smoke detection NFPA 72 provides guidelines to implement this technology for flame and smoke detection, opening interesting alternatives for designers and fire protection engineers. Many EHS managers and fire protection professionals selected VFD, because it is the only fire detection solution that effectively covered their needs. Many engineers, specialized in fire protection for paper plants, explained that they tested linear heat detection, aspiration smoke detection, IR/UV detectors and even beams, but none of these technologies performed as they needed on the dirtiest or more humid areas. Video Fire Detection (VFD) solutions Outdoor storage areas are often unprotected, because deploying flame or heat detection in large open areas can be costly and mostly ineffective. VFD solutions can detect smoke and flames in outdoor conditions, allowing the monitoring and protection of wood and paper bales in large areas. Fire detection and alarm systems should be designed with the following goals: Minimize risk of fires, including the use of fire detection technology in areas where regular detection technologies cannot be implemented or are not practical. Minimize risk of flame and smoke spread, with state-of-the-art detection algorithms that guarantee fast and effective detection. Also, reliable algorithms minimize the possibility of nuance or unwanted alarms. In case of a fire, fast detection gives occupants life-saving time to reach to a place of safety, before the flames and smoke have spread to dangerous levels. Global production of paper and pulp reached 490 million tons in 2020, with many industries and markets depended on the paper and pulp supply chain. That is why innovative ways to protect this supply chain, are key to sustain the paper market growth in the future.

Mobile Firefighting Systems Provide Flexible Fire Protection For Major Facilities
Mobile Firefighting Systems Provide Flexible Fire Protection For Major Facilities

Within traditional commercial and industrial firefighting systems, engineers have primarily focused on permanent installation designs rather than entertaining alternative or supplemental mobile firefighting systems. Permanent installation design is typically better understood, supported, and supplied throughout the fire protection engineering and manufacturing community. However, mobile firefighting systems provide unique solutions and advantages compared to their permanent installation cousins such as flexible deployment, simpler servicing, improved economy, and much higher performance availability. The combination of both systems is frequently the most strategic solution for the facility operator. Limitations of fixed installation systems Permanent installation (fixed) systems include everything from sprinklers, foam systems, primary watermain pumps, and the plethora of piping in between. A large refinery complex will need to address various hazard mitigation and control problems that span both hardware and personnel needs. In the event standard hazard mitigation safety procedures and equipment have failed, the facility immediately initiates a hazard control operation. Passive fixed systems automatically engage the hazard through an array of sensors, mechanical triggers, and control algorithms. A properly designed system with adequate hazard coverage, preplanning, preventative maintenance, and testing will successfully terminate the hazard, while firefighting personnel respond and ensure no further hazards develop. This conceptual approach relies on hardware and personnel all operating as planned…. Combining permanent and mobile apparatus “According to plan” would never have any failures or fires, but history has a different script. In the worst-case petrochemical scenario, fixed systems fail to extinguish a hazard putting the entire response on human and mobile hardware resources. This would include but is not limited to firetrucks, mobile high-flow pumping systems, large mobile monitors, foam proportioning units, and large diameter layflat hose. This type of response escalates into a larger scale operation, sometimes involving agencies beyond the facility operator itself. Although a low probability event, the risk to life and property is significantly substantial. Fixed systems may be rendered inoperable due to the loss of electrical power or actual physical damage Reducing fire-related expenditureMore typical than the worst-case scenario, facilities experience both maintenance-related system downtimes and natural phenomena damage such as extreme weather and seismic events. In this case, fixed systems may be rendered inoperable due to the loss of electrical power or actual physical damage. In any of these situations, mobile fire apparatus may fill the gap requirements of the facility as their flexible storage and deployment would protect them from everything but the worst natural disasters. Their further benefit is that a smaller set of mobile apparatus resources may be used to protect a larger amount of infrastructure, especially while in use in a mutual-aid program between facilities and communities. According to the NFPA’s report “Total Cost of Fire in the United States”, fire-related damages and expenditures from 1980 to 2014 have risen from roughly $200B (adjusted for inflation to 2014) to nearly $330B. The greatest expenditure is in fire safety costs in building construction, amounting to $57.4B. Although the overall losses per year as a ratio to protection expenditures has dropped by roughly 70% over the past 30 years, petrochemical facility losses have continued to rise over the same time. In the worst-case petrochemical scenario, fixed systems fail to extinguish a hazard  Petrochemical facility challenges According to the NFPA, refineries or natural gas plants had reported an average of 228 fires or explosions per year through the 1990s. Furthering this data with Marsh’s “100 Largest Losses, 25th edition”, refinery losses have continually expanded throughout the last two decades with 11 of the top 20 largest losses of the past 40 years happening during or after the year 2000. Two primary drivers of this trend are the advanced age of petrochemical facilities and their staggering complexity. As oil margins fall, upstream operational businesses are detrimentally affected by reduced investment in everything to new equipment, maintenance and passive safety systems. There is an observable correlation between a major oil price drop followed by upstream facility fire losses. Even with reduced investment and oil throughput growth rates, US refinery utilisation at the end 2017 was at 96.7%, the highest since 2005 (Marsh, The Impact of the Price of Oil). The short story is that systems and personnel are being asked to do more with less with each passing year. Cost-effective mobile apparatus systems  Mobile fire apparatus is generally more cost-effective to procure when using standardised designs and application methodology. They can access open water sources by either drafting (when in close proximity to the water) or using floating source pumps (for variable level or difficult access water sources). Mobile fire apparatus is generally more cost-effective to procure when using standardized designs and application methodology With this open water access, they can provide significantly more water (upwards of 10,000 GPM or more per system if necessary) than any typical fixed fire pumping solution. Moreover, as their primary benefit, they are easy to move and deploy. This benefit allows them to be utilised at the point of hazard as needed while being easily accessible for service. While fixed systems are installed at “every known” hazard and must be continually maintained to operate effectively, mobile systems may be used sitewide or across facilities. This flexibility reduces overall capital expenditure requirements and establishes a valuable primary and secondary firefighting system depending on the hazard and facility resources. Combining fixed and mobile systems Permanent installation fire suppression systems are a mainstay of modern day firefighting. They provide immediate passive response with little human intervention. However, as facility utilisation is pushed to maximum capacity while fixed systems continually age out without adequate replacement or maintenance, mobile systems will need to both fill the response gap and provide a final wall to total loss incidents. The reality is that both fixed and mobile systems need to work together to provide the safest possible operation. Service and training requirements need to also be maintained to manage an adequate, or even better, exemplary response to hazard control incidents. Managing major facility uptime requires continuous oversight and to drive hazard mitigation standards throughout the organisation, including executive management. A safe, reliable and fully-functional plant is also a profitable and cost-effective plant much like a healthy worker is a better worker. Protect your people and property and you will protecting your company’s future.

Latest Elkhart Brass Mfg Co., Inc. news

Kurtis Rood Joins Safe Fleet Fire, EMS North American Sales Team
Kurtis Rood Joins Safe Fleet Fire, EMS North American Sales Team

Safe Fleet Fire, EMS and Industrial (FRC, FoamPro, Elkhart Brass, ROM) is excited to announce and welcome the addition of Kurtis Rood as a member of the North American sales team. In his new role, Kurtis will be responsible for supporting Midwestern OEM customers and dealers while expanding use of the portfolio of safety products. He joins Safe Fleet from TTI (Milwaukee Tool) where he was a territory rep in charge of generating new growth opportunities. Prior to TTI, Kurtis completed his undergraduate studies at the University of Kansas where he graduated with a double major in Management and Marketing. His office will be based out of the Chicago, Illinois area.

Toyne Provides A New Rescue/Pumper Vehicle To The Rochelle Fire Department As An Upgrade To Their Current Apparatus
Toyne Provides A New Rescue/Pumper Vehicle To The Rochelle Fire Department As An Upgrade To Their Current Apparatus

In the Midwestern Illinois city of Rochelle, the local fire department took delivery of its first Toyne Apparatus, a fully customized rescue/pumper. The Rochelle Fire Department's (RFD) new rescue/pumper will replace an older fire truck built-in 1995 that had served the department for 26 years. Built to take the call, the department’s latest fire apparatus addition is ready to protect the community. Established in 1877, the RFD has been serving the residents of Rochelle for nearly 145 years. The department has 34 firefighters on its roster and manages nine apparatus. Building robust apparatus In 2014, they responded to nearly 2,000 emergency calls. The department's firefighters will go through in-service training on their Toyne Apparatus before being officially put into service. "This is a highly capable rescue/pumper, and it's equipped with a wide variety of specialized hardware to assist the Rochelle Fire Department for a range of different emergencies," said Bill Bird, Toyne Product Support Coordinator. "We're proud to build an apparatus as robust as this one is." The rescue/pumper was stall-built at the Toyne manufacturing facility in Breda, Iowa. Constructed with bolted painted stainless steel, the apparatus body is made to stand up to the elements. Toyne mounted the body onto a Spartan Metro Star ELFD chassis, and the cab boasts a 24-inch raised roof. Under the hood of this commanding apparatus is a 380-horsepower Cummins ISL9 engine and an Allison 3000 EVS transmission. Vital hardware components The rescue/pumper has plenty of storage options to accommodate different tools On the inside of the cab, there is seating for up to six firefighters. Toyne outfitted the rescue/pumper with an array of vital hardware components that will be critical to operations and emergency response, such as a 360-degree backup camera system, FireCom in-cab intercom system, and an in-cab EMS storage compartment. RFD's Toyne tailored apparatus was designed to be a multirole platform during emergencies. The rescue/pumper has plenty of storage options to accommodate different tools for fire and rescue situations. Quick access to their equipment is ensured with ROM painted roll-up doors, Toyne custom slide-out shelving, custom slide-out tool boards, and rear slide-in storage for ladders and pike poles. Designs called for installing an on-board SCBA air bottle refill system, air hose reels, a custom-built air-bag storage unit, and winch receptacles that are anchored on all four sides of the apparatus. Addressing different emergencies For fire suppression, Toyne added a 500-gallon UPF tank, 1,250-gallon-per-minute Hale Qmax enclosed side-mount pump, and an Elkhart Cobra Monitor with an 8598 extender. A Waterous Overboard Foam Power Fill and Waterous Aquis 6.0 Class-A/B foam systems elevate the department's ability to address different emergencies. The pump is controlled by a fire research pump boss pressure governor, and the tank level is monitored by an ICI SL Plus tank gauge. Emergency lighting consists of a full suite of Whelen lights; including Whelen warning, PFP2 scene, PFH2 brow lighting, and LED arrow stick lighting. The body storage bays are wired with ILI LED strip compartment lighting. Dinges Fire Company from Amboy, Illinois, sold this Toyne rescue/pumper to the Rochelle Fire Department. As an authorized Toyne dealer, Dinges Fire Company serves fire departments throughout the state of Illinois.

Toyne Delivers A New Pumper Vehicle To Enhance Fire Safety At Skamania Fire District
Toyne Delivers A New Pumper Vehicle To Enhance Fire Safety At Skamania Fire District

Trading views of the cornfields of Iowa for forested mountains of Southern Washington state, a new Toyne pumper–named engine 11–has been delivered to its new home with Skamania Fire District #1 (SFD). This is the department's second Toyne tailored apparatus, and just like the other Toyne in their fleet, it is geared explicitly for SFD's needs. Established in 1959, Skamania Fire District #1 has been providing fire protection to the residents of Carson, Cook, Stabler, and surrounding communities in Skamania county for over half a century. Hazardous material emergencies In total, the department watches over a mountainous territory that spans nearly 44 square miles. To cover such a large area, the fire district has 35 highly trained volunteers that respond to fire, medical, trail, rope, vehicle, and hazardous material emergencies. Their new Toyne apparatus is designed to reinforce their dedicated response efforts to those they serve. This versatile Toyne Pumper will be a valuable addition to Skamania Fire District's fleet" "This versatile Toyne Pumper will be a valuable addition to Skamania Fire District's fleet and a big help to the volunteers serving their communities," said Bill Bird, Toyne Product Support Coordinator. "We are proud to be a part of their process, and to be trusted by this fire department to build highly capable apparatus." Backup camera system Skamania's pumper is mounted to a Spartan metro star MFD chassis with a ten-inch raised roof. Under the hood, the apparatus is equipped with a 450-horsepower Cummins ISL9 engine and an Allison 3,000 EVS transmission. The cab's interior has enough seating for six occupants and hosts several different features, including a backup camera system, in-cab custom storage, and an in-cab radio system with mounted headsets. Engine 11 is covered in a two-tone black/red paint scheme with custom lettering and striping. Main storage compartments This pumper body is stall-built with bolted-painted stainless steel. Designs called for plenty of customized storage to meet the fire department's needs. Fitted on each side of the engine's storage compartments are ROM-painted roll-up doors for fast, easy entry to equipment. For added ease of access to all of the tools of the trade, the main storage compartments feature Toyne's custom slide-out shelving and custom swing-out toolboard. Enough storage is available over each wheel well to accommodate up to eight SCBA bottles Enough storage is available over each wheel well to accommodate up to eight SCBA bottles, with additional SCBA mounts added to the primary storage compartments. On the top-side of the equipment compartments is room for hard suction hoses. At the rear end of the apparatus is an area for slide-in ladder and pike pole storage. Telescoping tiller extension At the heart of the department's new pumper is a 1,250-gallon-per-minute Hale Qflo pump. To feed this beast of a pump, Engine 11 is equipped with a 1,000-gallon UPF tank. For added fire support, Toyne installed a FoamPro 2001 Class A foam system with a 30-gallon foam cell. In addition, the Skamania firefighters have an Elkhart Vulcan perm monitor with a telescoping tiller extension at their disposal. A host of electrical components ensures Engine 11 can support these first responders beyond fire suppression. Toyne mounted a hefty 10,000-watt Onan hydraulic generator that can provide continuous power to the apparatus' two electric cord reels and fire research telescoping lights. SFD’s pumper is also wired up with Whelen warning lights, Whelen MV9 scene lighting, Firetech Hiviz 72-inch LED brow light, and ILI LED strip compartment lighting.

vfd