Vehicles - Expert Commentary

Protecting The Front Line with Self-Contained Breathing Apparatus
Protecting The Front Line with Self-Contained Breathing Apparatus

The product lifecycle of self-contained breathing apparatus (SCBA) is approximately ten years, during which time technology inevitably advances considerably in terms of digitization and ergonomics. Increasingly pertinent in the last decade, and especially since the Pandemic, has also been how kit can be designed for ease of cleaning to ensure firefighters are protected from harmful carcinogens as well as bacterial and viral infections. When we surveyed UK firefighters as part of our ‘Health for the Firefighter campaign’ to understand their concerns about exposure to carcinogens and COVID-19, we learned the vast majority (84%) admitted they were concerned about the risk of cancer, while more than two thirds (68%) fear the impact COVID-19 might have on their long-term health. Unequivocal statistics that warranted action in our technology design. Proven support infrastructure The SCBA product lifecycle allows time for medical and safety technology manufacturers, such as Dräger, to take advantage of technological developments, and thoroughly test and future proof them. It also enables us to utilize our direct relationships with the UK fire services, not only to accommodate day-to-day feedback, but also to learn from our support of major incidents such as Grenfell and the Salisbury poisonings. The SCBA product lifecycle allows time for medical and safety technology manufacturers Following Grenfell, for example, we saw the critical importance of reducing the weight and size of kit to allow for greater ease of movement, as well as how critical it is to have the equipment underpinned by a resilient and proven support infrastructure. AirBoss, Dräger’s latest SCBA offering represents a digital progression, where telemetry and connectivity provide the information, and enable the integration and communication required to further firefighter health and wellbeing. This decade’s launch is no longer a product, but a connected solution. Providing vital information Digitalization is critical. Dräger offers the only operationally-proven telemetry solution, providing vital information which is automatically communicated between the wearer of the BA set and the Entry Control Point – without the need for either team to stop what they are doing to send communications. These signals include manual and automatic distress signals, team withdrawal signals, cylinder pressure, time to whistle and time of whistle. This system also provides comprehensive data regarding the firefighters’ condition in relation to their SCBA, proving invaluable to those responsible for monitoring and directing BA crews. A new feature, unique to Dräger’s AirBoss, are ‘Buddylights’ fitted to the backplate, which use digital data from the set to provide immediate and highly-visible signaling to firefighters of their team’s cylinder pressures and physical condition. AirBoss, Dräger’s latest SCBA offering represents a digital progression Providing comprehensive data The optional Dräger Web client enables workshop, management and command staff to utilize the data created on scene wherever they are, and at any time. Reporting can also be customized for multiple purposes from user or device history to synchronized overviews of complete incidents. The ability to create incident reports on evidential and tactical levels provides comprehensive and valuable post-incident analysis tools for debrief and training purposes, or in case of any investigation or inquiry. For future developments, Dräger is working with partners in the UK looking at solutions for location and tracking of firefighters and providing comprehensive data regarding the firefighter’s condition at an incident. The latter includes information such as body core temperature, heart rate and other vital statistics to allow external teams to monitor the early signs of heat stress and other physiological strains. Reducing physical stress Another critical focus is ergonomics. Improved wearer comfort has been achieved through working with medical experts in this field and shifting the center of gravity relationship between the human body and the set, creating a ventilated space by the SCBA backplate. AirBoss’ new Type 4 Nano cylinder provides a continued reduction in cylinder weight AirBoss’ new Type 4 Nano cylinder provides a continued reduction in cylinder weight, which can also reduce full life costs to the service, as the Nano has an unlimited life. These improvements reduce physical stress on the firefighter which in turn reduces the risk of strain-related injuries and fatigue when wearing the set operationally as well as extending the working duration due to reduced physical exertion. With AirBoss, the weight is carried by the legs and pelvis rather than the back. Improving personal comfort This not only improves personal comfort, but also enhances mobility within confined spaces and while descending ladders and stairwells. In an industry where a split second can be the difference between life and death, these advancements are crucial. On a practical level, the Dräger AirBoss has also been designed to be ‘snag-proof’, ensuring that all attachments are neatly connected or integrated to mitigate any risk of snagging or entanglement. Alterations have been made to maximize cleaning practices, including the introduction of smoother, non-absorbent, water-repellent surfaces to make equipment easier to wipe down and decontaminate. Numerous attachment points have also been included so kit can easily be dismantled for optimum cleaning – both mechanically and by hand. To this point, some fire services are moving towards mechanical washing systems, which provide complete consistency in washing temperatures, concentration of detergent, speed and temperature of drying. Vehicle charging systems The Dräger AirBoss solution is centered around four pillars: usability; safety; serviceability and connectivity Recognizing the financial pressures which the fire services are under, the AirBoss system is designed to enable fire services to maximize the significant investment already made into their SCBA and telemetry. With a modular design, AirBoss is backward compatible with existing Dräger PSS SCBA and Telemetry, enabling elements of the existing set to be upgraded over a period of years. This reduces the requirement to purchase a full suite of new equipment including telemetry, pneumatics, electronics, integrated communications, cylinders and vehicle charging systems. Overall, the Dräger AirBoss solution is centered around four pillars: usability; safety; serviceability and connectivity. These pillars, which support utilizing digitalization, improved ergonomics and ease of cleaning, are how we intend to protect our firefighters’ health and wellbeing, both today and as our future-proofed technology advances to meet the needs of tomorrow.

Aviation Incidents: A Look at Local Authority Fire Service Response
Aviation Incidents: A Look at Local Authority Fire Service Response

One if the few bonuses of the 2020 COVID-19 Lockdown in the UK was the dramatic reduction of aircraft noise around our homes. Certainly in the Southeast of England, it gave us some thought as to the number of aircraft in the sky, and what the consequences might be if something went wrong… Aviation in the UK is split between what is known as Commercial Airport Transport (CAT) and General Aviation (GA). The CAT sector operates out of 25 airports and accounts for around 900 aircraft. However, the GA sector accounts for 15,000 aircraft, flown by 32,000 pilots, operating out of 125 aerodromes licensed by the Civil Aviation Authority (CAA) and over 1,000 other flying sites (According to the General Aviation Awareness Council – our mapping data suggested 1650 sites) (1,2). Roughly 96% of the aircraft in the UK are engaged in General Aviation, engaged in business, leisure engineering and training activities, and HM Government estimate that the sector employs around 38,000 people (3). Each licensed airfield has its own firefighting response, termed airport rescue and firefighting services (RFFS) governed by the CAA guidelines and they are required to be:- .. proportionate to the aircraft operations and other activities taking place at the aerodrome; Provide for the coordination of appropriate organizations to respond to an emergency at the aerodrome or in its surroundings; Contain procedures for testing the adequacy of the plan, and for reviewing the results in order to improve its effectiveness. (CAA 2020) Ensuring Adequate firefighter training So simply put, each airfield needs to ensure it has adequate training, media, personnel in appropriate quantities to deal with any likely incident, given its size and traffic. There are around 1654 airfields in the UK, with 125 of those being licensed However, this is only limited to licensed airfields and the response is typically limited to the airfield itself, and the immediate surrounding area. Airfield vehicles are often specialist aviation firefighting vehicles – not necessarily suitable for driving potentially long distances to an incident. Even so, it is a well-established principle that RRFS would only fight the initial stages of any fire, to be relieved by, and with command passed to local authority fire services. There are around 1654 airfields in the UK, with 125 of those being licensed. In 2019-2020 (to date) there have been 62 air crashes, of which 9 involved a fatality. If we plot the locations of all airfields of any type, all the licensed airfields and the crashes, we can see the spatial relationship between them. Below, we see the two distributions – on the left, crashes versus all airfields and on the right crashes versus licensed fields. It’s clear that the crosses (crashes) and dots (fields) are not always in the same place, so clearly there is a potential problem here – namely the specialized airfield fire response is unlikely to be able to respond. Using the spatial analytical capability of QGIS, the open-source GIS software, we can then start to look at the distances from the airfields of the crashes. We can see that (based on the 2019-2020 data) that on average a crash occurs 3.22km from an airfield, but 15.78km from a licensed airfield (where the firefighting teams are). The maximum distance from a licensed airfield was 57.41km, two thirds of the crashes were more than 10km from a licensed airfield and over a third were more than 18km away. Fig 1a (left) shows crashes versus all airfields. Fig 1b (right) shows crashes versus licensed airfields only. Aircraft incidents pose complex firefighting challenges So, what does this all mean? Well the simple conclusion we can draw from this data is that there is a sizable risk of an aircrash occurring on the grounds of a non-airport fire service. In 2019-2020 there have been 62 air crashes, of which 9 involved a fatality Bearing that in mind, it’s also worth considering that aircraft incidents pose challenges to firefighters and firefighting, that need to be considered. The construction of aircraft has been evolving since the first days of flight, with materials that are strong, light and cheap to produce being adopted and in recent years created to order. This has seen a move from natural materials, such as wood and canvas towards aluminum and man-made materials, and in recent years man made mineral fibres (MMMFs) which are lighter and stronger than natural materials, and can be moulded into any shape. The problem is, MMMFs disintegrate into minuscule fibres when subject to impact or fire, which can stick like tiny needles into firefighters’ skin, leading to skin conditions, and pose a significant risk to respiratory systems if breathed in. As with all fires, there are risks associated with smoke products, with exposure to fuels and other chemicals and so there is the potential for a widespread hazmat incident, with respiratory and contamination hazards. Finally, there is always the risk, more so perhaps with military aircraft, of explosives or dangerous cargoes on the aircraft that put firefighters at risk. The problem is therefore this: There is a constant, but small, chance of an aviation incident occurring away from an airport, and requiring local authority fire services to act as the initial response agency, rather than a relieving agency. These incidents, when they do occur, are likely to be unfamiliar to responding crews, yet also present risks that need to be addressed. PLANE Thinking Despite this landscape of complex risk and inconsistent response coverage non-airfield fire services can still create an effective response structure in the event of an aviation incident away from an airfield. We have drawn up a simple, 5-step aide-memoire for structuring a response, following the acronym PLANE (Plan, Learn, Adapt, Nurture, Evolve). We are aware that all brigades will do this already to some extent (in fact they are obliged to). We are also aware that there was little point going into the technical details of firefighting itself – that is handled elsewhere and in far more detail – but instead we considered a broad, high-level system to act as a quick sanity check on the response measures already in place. There is always the risk, more so perhaps with military aircraft, of explosives or dangerous cargoes on the aircraft that put firefighters at risk In many ways this mirrors existing operational risk exercises, and begins with a planning process – considering the nature of risk in the response area, building links with other agencies and operators, and collating and analyzing intelligence. Services should expand their levels of knowledge (Learn) around the issue, and consider appointing tactical advisors for aviation incidents and using exercises and training programs to test and enhance response. Having identified the risk landscape, and invested in intelligence about it, we may then need to consider adapting our approaches to make sure we are ready to respond, and having carried out all of this activity, we need to keep the momentum going, and continue to nurture those relationships, and that expertise cross the service. Rapid technological advancement Aviation technology does not stand still. Many of us will have seen this week the testing in the lake district of the emergency response jetpack (4), and this is just one example of the pace of technological advances in the sector. Consider the huge emerging market of UAVs, commercially and recreationally and the potential for incidents related to them, as well as their potential application in responses. Finally, Services, potentially through their dedicated TacAd roles, need to keep abreast of emerging technologies, and ensure that the Planning and Learning continues to match the risk. Aviation technology does not stand still So, in conclusion, we have a (very) simple system for preparing for the potential for airline incidents off airfields. We are happy to admit that it’s not going to solve all of every brigades’ problems, and we’d like to think it simply holds a mirror to existing activities. We do hope that it does give a bit of structure to the consideration a potentially complex process, and that it is of some use, if only as a talking point. Best practices and technologies and will be among the topics discussed at the Aerial Firefighting Europe Conference, taking place in Nîmes, France on 27 – 28 April 2021. The biennial event provides a platform for over 600 international aerial firefighting professionals to discuss the ever-increasing challenges faced by the industry.   References 1. General Aviation Awareness Council. Fact Sheet 1 - What is General Aviation (GA)? 2008. 2. Anon. UK Airfields KML. google maps. 2020. 3. Davies B. General Aviation Strategic Network Recommendations. GA Champion, 2018. 4. Barbour S. Jet suit paramedic tested in the Lake District “could save lives.” BBC News. 2020. Article Written by Chris Heywood and Dr Ian Greatbatch.

Fire Fleets Switch Gears To Fully Automatic Transmissions
Fire Fleets Switch Gears To Fully Automatic Transmissions

For those responsible for procuring and managing fire vehicle fleets, speed, driveability and reliability are paramount concerns. As well as the ability to accelerate, slow and stop rapidly and safely in city traffic, fire engines need to be highly manoeuvrable in tight spaces or on rough terrain. They are required to access many different types of environment at high speed, and, even more than other types of heavy-duty vehicles driven at slower speeds by professional lorry drivers, they need to be easy to operate. At the same time, vehicles are needed that are large and powerful enough to carry fire crews, heavy specialist equipment and large quantities of water or foam. They must also provide a smooth ride, for when crews are wearing bulky items such as masks and oxygen tanks. And they have to be extremely reliable, as breakdowns can cause loss of life. In recent years, manufacturers have generally preferred to specify fully automatic transmissions For all these reasons, fully automatic transmissions are now specified on most European fire vehicles, particularly in Germany, France, Spain and the UK. Compared to manuals, they can offer up to 35% quicker acceleration, with more torque at launch as well as no power interruption during gear changes upwards or downwards, enabling quick deceleration of the vehicle and bringing appliance to a complete stop when combined with an Allison Transmission retarder. That all adds up to faster response times and better manoeuvrability on crowded city streets. Automatics are also far more reliable and durable than manual or automated manual gear boxes, which are prone to wear and tear, particularly on the clutch. A key benefit that most automatics offer is a torque converter, which eliminates the need for a clutch altogether. automatic transmissions Compared to manuals, they [fully automatic transmissions] can offer up to 35% quicker acceleration This was the rationale for the specification of Allison automatic transmissions on London Fire Brigade’s latest Mercedes-Benz Atego and Scania trucks. “The Allison [automatic] transmission was specified partly because of its responsiveness and controllability, and partly because it has proven itself to be such a reliable solution for LFB’s operations,” Neil Corcoran, engineering and technical manager at Babcock International Group, which manages and maintains the LFB fleet, told us." We have seen for ourselves that the Allison has minimal maintenance requirements. And, of course, the dependability of equipment is essential in emergency services.” Allison has a dominant position in the European fire sector, where it has spent decades designing and building fully automatic transmissions that perform at their best in critical situations and offer vital benefits not provided by manual or automated manual transmissions (AMTs). This is particularly true in airport fleets, where vehicle response times are dictated by legislation. London Fire Brigade has a large number of Mercedes-Benz Atego fire trucks, all equipped with Allison transmissions Cleaner fuels In recent years, manufacturers have generally preferred to specify fully automatic transmissions. This continues to be true now when, in common with other commercial vehicle markets, they are looking at alternatives to diesel fuel, such as compressed natural gas (CNG) or liquefied natural gas (LNG), to reduce emissions in the medium to long term, particularly in urban areas. Automatics are far more reliable and durable than manual or automated manual gear boxes, which are prone to wear and tear Automatics tend to be well suited to both compressed and liquefied natural gas engines because the torque interrupts that occur with manual and automated manual transmissions during gear shifts are more volatile and less predictable in the case of spark-ignited CNG and LPG engines. Automatics, by contrast, can provide a smooth transfer of power to the drive wheels and maximum efficiency between engine and transmission, resulting in better performance, manoeuvrability, safety and driver comfort, as well as a significant reduction in noise. In 2019, German fire engine manufacturer Magirus revealed the world's first compressed natural gas (CNG)-powered firefighting vehicle in series production. Part of the company’s 'Innovative Drive Line (iDL)' series, the (H) LF 10 fire engine has an Iveco Eurocargo 4x2 chassis with 420 litres of CNG and a fully automatic Allison transmission. It has a range of up to 300 km or pump operation of up to four hours. Speed and power for forest fire vehicles Automatic gears are also increasingly specified on 4x4 vehicles used to tackle forest fires as they outperform AMTs in extreme conditions. Forest firefighting vehicles need to be able to carry powerful, high-capacity pumps and canons as well as very large quantities of water or other extinguishing media. And they must be able to travel rapidly over large distances and very rough and steep terrain, in extreme heat. AMTs and manual transmissions cannot cope well with these conditions. An example of a newly launched automatic forest firefighting vehicle is the Spanish-made UROVESA K6 IS, which is equipped with the Allison 3000 Series™ transmission. It features a chassis with a maximum gross vehicle weight (GVW) of 16 metric tonnes, excellent traction and extremely robust parts. According to UROVESA's President and CEO Justo Sierra, the automatic transmission, combined with an independent suspension system, affords greater guarantees of safety and efficiency than other vehicles and is in great demand for forest firefighting applications because it can travel at twice the speed of conventional 4x4 trucks. "These transmissions facilitate driving, prevent gear shift errors, enable both hands to be on the wheel at all times and enhance driver ergonomics and safety," explained Sierra. The UROVESA K6 IS forest firefighting vehicle, made in Spain, equipped with a fully automatic transmission. It can travel at twice the speed of conventional 4x4 trucks combating vehicle rollback There are a number of ways in which automatics help reduce accidents and improve driver awareness, comfort and safety, from combating vehicle rollback – a major concern with manual transmissions – to providing superior vehicle control and manoeuvrability at low speeds. Furthermore, because the engine’s responses are so closely related to what the driver asks of it, the vehicle’s start-up progress is more predictable to cyclists and pedestrians who might otherwise misinterpret a slow start as an intention to remain stationary. Electronic features like putting the transmission into neutral when leaving the cab or safety interlocking with body equipment further reduce the risk of accidents. Built to last Fire vehicles tend to be in use for only a few hours each week, with low mileage. Consequently, they can be operational for up to 25 or 30 years. So it's even more important for fleet buyers that they get specifications right, to ensure their vehicles will pass the test of time and provide the performance they need for decades. That's one more reason why so many continue to opt for Allison planetary automatics.

Latest Road Rescue news

Road Rescue Unveils Critical Care Transport Ambulance At FDIC 2010
Road Rescue Unveils Critical Care Transport Ambulance At FDIC 2010

The newly displayed ambulance by Road Rescue is equipped to tackle critical medical situations Built on a Furion Chassis, the New Ambulance Serves as an Emergency Room on Wheels. The ambulance was exhibited at FDIC 2010. Road Rescue, Inc. unveiled a new "emergency room on wheels" as it made its debut by exhibiting Critical Care Transport vehicle at the fire-rescue industry's biggest trade show. Road Rescue, which is a subsidiary of Spartan Motors, Inc. (Nasdaq: SPAR), will showcase the new ambulance, which serves as a mobile neo-natal or intensive care unit, at Booth 2432 during the Fire Department Instructors Conference, which runs through April 24 in Indianapolis, Ind. Built on a Furion® chassis from Spartan Chassis, this new version of the Ultramedic is designed to operate in a high-density urban area to deliver extremely specialized, pre-hospital medical care to the patient onboard. "Our new Critical Care Transport brings a high level of intensive care to patients in the field," said Dave Reid, senior vice president, Emergency Response Vehicles for Spartan Motors. "Whether transporting a premature newborn or handling triage after a hurricane, the Critical Care Transport carries the medical equipment needed to care for the most critically ill and medically fragile patients. "We feel that the new Critical Care Transport is the finest provider of pre-hospital medical care available today on the market." The modular body of the Critical Care Transport is self-contained and capable of operating independently from the chassis in the event of a vehicle breakdown or accident. This allows emergency-response personnel to continue to deliver life saving support. Modular body of ambulance provides it with enough flexibility and capability The unit can carry enough medical equipment to sustain ground operations for longer periods than traditional ambulances. The Critical Care Transport can be equipped with: Satellite communication system Multiple oxygen or compressed air tanks Redundant electrical systems Patient and cot lifts Isolettes for premature infants Generators or inverters to create either 12-volt AC or 12-volt DC power Special heat and air conditioning Refrigerators The new Critical Care Transport will be built on a Furion chassis from Spartan Motors. Introduced in 2007, the Furion is a purpose-built cab and chassis specifically designed for the emergency-response industry. It features a 94-inch galvanized steel cab designed for safety, roominess and maneuverability. "The Furion provides an excellent foundation for the new Critical Care Transport," said John Sztykiel, president and CEO of Spartan Motors. "Not only does the Furion provide a rugged, dependable and performance-oriented chassis, it does so at a very attractive price point that will resonate with dealers and customers alike. "This is a large and strategic step for Spartan. In the fire truck market today, more than 50 percent of all units ride on a custom chassis - a market we were instrumental in creating. We are very focused on leveraging this strength and developing custom chassis for the ambulance market, as virtually no vehicles are currently built on custom chassis." Uses for the new Critical Care Transport include: Cardiac transport Neo-natal care Backup to emergency helicopters in the event of poor weather conditions On-call for large or state police dispatch centers Natural disaster support Mobile medical clinics  

Spartan Motors Further Strengthens Commitment To The Emergency Vehicle Market
Spartan Motors Further Strengthens Commitment To The Emergency Vehicle Market

The Road Rescue manufacturing facility in South Carolina Investments in facilities and equipment will increase productivity In a move to strengthen its operations and performance, Road Rescue has received additional capital investment and leadership support from its parent company, Spartan Motors, Inc. As part of a strategic initiative announced six months ago, Spartan Motors has made capital investments in facilities and equipment to strengthen the Marion, S.C. manufacturer of premium ambulance and rescue vehicles. Spartan Motors is also investing in the development of new Road Rescue products that will be introduced in the coming quarters. Enhancements at the Marion facility include: Construction of a new customer inspection facility that is climate controlled and is illuminated by high intensity lighting Addition of equipment that streamlines the engineering and manufacturing processes, reducing order-to-delivery time Lighting upgrades throughout the facility to improve the manufacturing environment while supporting energy conservation Focus on continuous improvement, with an emphasis on refining work flow, reducing inventory and increasing speed David L. Reid, a vice president at Spartan Motors, will now lead the day-to-day operations of Road Rescue. Reid, who brings more than 30 years of leadership experience to this role, will have profit/loss responsibility for Road Rescue, as well as its sister company, fire apparatus manufacturer Crimson Fire, Inc. A Road Rescue team member putting the finishing touches to an ambulance Prior to joining SMI, Reid spent more than 20 years with publicly traded global furniture maker Herman Miller, Inc. While at Herman Miller, he served as senior vice president and general manager of Milcare, Inc., a subsidiary of Herman Miller specializing in healthcare furniture and equipment. He successfully returned Milcare to profitability by developing and expanding the dealer distribution network, establishing a strong government sales unit, expanding into international markets and making operational improvements. "Road Rescue builds the best, safest and strongest ambulances in the industry, and Spartan Motors remains deeply committed its success," said Tom Gorman, chief operating officer of SMI. "Dave Reid has been a recognized and effective change agent since joining us in 2007. He and his team have the full support - and resources - of SMI to supplement the talent in Marion. "Our team is focused on accelerating the progress at Road Rescue by sharing best practices from all the Spartan Motors family of companies with South Carolina to maximize the value we deliver to shareholders, dealers and end users. We are committed to having the right people in place to make this business successful in Marion." The announcement comes at the conclusion of a successful dealer meeting in Marion. More than 40 participants from 16 leading dealers spent two days at the facility reviewing new products and programs being developed for 2010 introductions. Dealers like Bob Reilly of North Eastern Rescue have already begun to see the changes. The additional investment will help streamline manufacturing processes "North Eastern Rescue is proud to partner with Road Rescue and SMI," said Reilly, partner in North Eastern. "In these uncertain times the financial backing and support of SMI for Road Rescue is comforting. It has allowed the people at Road Rescue to continue to focus on the quality and innovation that has made them a market leader." Reid looks forward to working with Reilly and other Road Rescue dealers, as well as the team in Marion, end users and other key stakeholder groups. "Spartan has a reputation of excellence in engineering and custom manufacturing in every industry where it operates," Reid said. "We are flexible, nimble and committed to meeting deadlines. The shared services team now operating at Road Rescue brings that philosophy to Marion." "Road Rescue, its dealers and end users will benefit from the financial investment and leadership support of the Spartan Motors team. I look forward to working with the associates in South Carolina to bring our best corporate practices to Road Rescue."

From The Wheels Up: Road Rescue Introduces Redesigned Ambulance Line At FDIC
From The Wheels Up: Road Rescue Introduces Redesigned Ambulance Line At FDIC

Road Rescue's Ultramedic - one of three ambulances the company has recently improved New technology, innovative features among 40+ improvements to product line Road Rescue will introduce a complete redesign of its line of custom ambulances at the emergency-rescue industry's largest trade show, which opens today. Road Rescue, a subsidiary of Spartan Motors, Inc., will showcase more than 40 improvements, including new technology and innovative features, on its line of Ultramedic®, Promedic® and Duramedic® ambulances. The redesign features enhancements in five key areas: module, doors, systems, appearance and hardware. Three redesigned ambulances will be on display at Booth 2432 during the Fire Department Instructors Conference (FDIC), which runs through April 25 in Indianapolis, Ind. "For the past year, the best minds in the ambulance industry have been working on an extensive ‘re-design' for our product line," said Gary DeCosse, president of Road Rescue. "While most ambulance manufacturers come to FDIC with one or two new features on their ambulances, our redesign incorporates more than 40 improvements to our entire product line. These are truly new vehicles - from the wheels up. "We have made extensive enhancements to improve vehicle safety and functionality. The result is a stronger, more durable and sleeker ambulance that will enable EMTs to be more efficient and effective when working on patients during transport." Road Rescue's new ambulance features significant improvements to the module, including: New crash-rail fender ring system that is more impact absorbent. The new system, which features an extruded rubber crash rail, does not require fasteners and simply snaps on the vehicle body. In the event of an accident, the system is more easily repaired or replaced in the field. Redesigned roof-radius extrusion with triple-wall construction that is substantially stronger and exceeds the new KKK vehicle standards. New exterior doors featuring a double-box, pan-formed composite construction with a hidden hinge that delivers a lighter, stronger and more durable door. The composite construction improves vehicle insulation and reduces road noise. The hidden hinge is protected from the elements as well as a cleaner overall appearance. - and improvements to the vehicle systems, including: A refinement of the patient-centric concept introduced at FDIC in 2008 that standardizes the overhead equipment mounts and reduces their profile to deliver more working room for EMTs. The new designs also feature a rail system that provides a central point for medical equipment and improved lighting. An innovative new interior outlet rail system patterned after those utilized by hospitals to consolidate outlets into a convenient location that can be field adjusted when procedures change. A refined central air system that realigns vent locations to improve airflow and efficiency whether heating or cooling the vehicle. The overall look is also cleaner. Enhancements to the interior and exterior appearance of the vehicle. Exterior upgrades include a shift to chrome handles, flanges, crash rails, trim and housing. Interior improvements include the use of lighter and more soothing colors, stainless steel accents and improved trim options. Hardware upgrades throughout the vehicle that enhance ease of cleaning, restocking and overall functionality. "In many ways, it's what you won't see in this redesign that matters the most," DeCosse said. "More than half of all the improvements and innovations are incorporated into the build process, further enhancing our industry position as a leader in quality and safety. "Our new ambulance line incorporates new materials and new processes that will allow us to improve the efficiency of our production line and reduce order-to-delivery times. From major structural changes down to simple hardware changes, we have developed a truly innovative vehicle that delivers improved performance."

vfd