Software - Expert Commentary

Fire Protection For Paper And Pulp Plants
Fire Protection For Paper And Pulp Plants

There is a sense in some markets that the paper and pulp industry will decline owing to the digital technologies with which people interact every day. While this might be considered logical, the reality is completely different. In fact, the paper and pulp industry has experienced a steady growth and will continue to do so in 2021. Production of paper increased by more than 450% in the last decades and the demand of paperboard in the world is expected to grow significantly, driven by e-commerce and big retailers increasing their presence in the online sales universe. This sustained growth in production capacity and paper consumption presents several fire risks to companies and exposes communities that develop around paper mills, to the impact of disasters caused by these fire risks. Fire risks in the paper and pulp industry Paper and cardboard are combustible, but this is not the only fire risk found in these types of industries. Raw materials and finished goods storage are sensitive to fire. In addition, the paper making process includes several stages where fires can occur, due to hot surfaces or poor ventilation. The most relevant fire risks on a paper plant are: Storage Areas: As mentioned before, paper and cardboard are combustible. Solid paper blocks and reels have hard surfaces that don’t ignite easily, but usually these reels can suffer minor damages or have loose sheets that significantly increase the fire risk. When paper reels are stacked in columns, gaps in the center can act as chimneys and when fires start in the bottom of the stack, this chimney effect will accelerate smoke and hot air spread, increasing vertical and horizontal flame spread. Wood and Bale storage fire risks Bale storage also presents a high fire risk, as loose materials are always present Raw materials for the paper making process can have two main sources, forestry products (mainly wood) or recycled cardboard and paper. Wood storage presents several challenges, especially due to wood chips that are highly combustible and, in some cases, even explosive. Bale storage also presents a high fire risk, as loose materials are always present. Fire in baled paper is difficult to extinguish and generates heavy smoke. In many recycling facilities, these paper bales are stored outdoors, where paper or rags soaked in flammable liquids, embedded between the paper sheets, can ignite resulting in a fast spreading fire. Chemicals, flammable liquids and gases In addition, it is possible to find different types of chemicals, flammable liquids and gases that are used in the paper making process. These materials have their own fire-related risks that need to be taken in consideration. Production Areas: In pulp factories, there are several long-distance conveyors that transport wood and wood chips. These conveyors constitute a fire risk and the most probable causes of fire are bearing damage, overheating of the conveyor and igniting chips in the environment. IR dryers, a common source of fire After the wood has been transported, chipped and digested, the paper making process becomes extremely humid, due to the large amounts of hot water and steam needed. But, as soon as the pulp fiber sheet starts to dry, the hot surfaces in contact with the paper sheets can be a source of ignition. IR dryers used in the process are also a common source of fire in the paper industry. When the sheet of paper is formed, close contact with reels and bearings moving fast can create static electricity that could ignite loose paper or airborne particles. Problems like these are likely to be more extensive in tissue mills. Paper dust is generated in certain parts of the process, especially where paper shits are slit or cut. Poorly insulated steam pipes lead to fire Poorly insulated steam pipes can ignite paper dust or even their own insulation materials. In addition, paper dust gathers in the ventilation grills of machinery, causing overheating and igniting as well. Heated oil is used in several parts of the process as well and if a malfunction occurs on the Hot Oil Roll systems, leaks might occur, exposing hot surfaces to this oil and causing ignitions. A paper mill has hydraulically operated machinery, where leaks or sprays might ignite as well. Service Areas: As in many other manufacturing facilities, several service areas can be found. Electrical and network equipment rooms have an inherent fire risk due to damaged wires or equipment, overheating or short circuits in high voltage circuits. Transformer and generator areas entail fire risks as well. High fire risk for boiler rooms Flammable gas distribution systems can be ignition sources, in case of leaks or damaged pipes or valves Hot water and steam are key components for the paper making process. For this reason, paper plants use high capacity boilers that can be powered by flammable liquids or gases. A high fire risk can be considered for boiler rooms. Flammable gas distribution systems can be ignition sources, in case of leaks or damaged pipes or valves. In addition to the fire risks mentioned in these areas, many maintenance operations can also pose fire risk, especially when hot works are being performed. Sparks caused by welding or the use of certain tools can ignite paper sheets or dust in the air. Poor housekeeping and buildup of paper dust, for example, increases the risk associated with maintenance and construction works. Prevention, the first line of defense According to the Health and Safety Executive from the United Kingdom, 60% of fires on paper mills are caused by machine faults and poor housekeeping. The first line of defense to avoid fire risks in paper plants is prevention. As mentioned before, a high number of fires in these types of facilities occur because of poor housekeeping and machine malfunction. The key is to identify the risks and possible ignition sources, and apply measures to minimize them. As in many industries, fire protection has two main components: Passive and Active protection. Passive fire protection measures Passive measures include fire rated walls, ceilings, and floors in the most critical areas. Chemical storage areas should be physically separated from other dangerous areas, if this is not possible then the walls separating areas should be fire rated and materials must be stored in a way that minimizes the risk of fire spread by radiation or conduction. Proper compartmentalization and intumescent protection of structural elements should be part of the package as well. Passive measures include proper ventilation and smoke control. As mentioned before, paper dust is a major fire risk, which is why ventilation and cleaning of hoods over the paper machine is important to minimize the possibility of ignition. Fire resisting construction should be designed with the following goals in mind: Protection of escape routes Form compartments to contain fires that might occur Separate areas of higher fire risk Protect load bearing and structural members to minimize risk of collapse Sprinkler systems, gas extinguishing systems and hose reels Active fire protection includes sprinkler systems, gas extinguishing systems and hose reels to support fire brigades Active fire protection includes sprinkler systems, gas extinguishing systems and hose reels to support fire brigades. Finished goods stored indoors should be protected with sprinkler systems and the same should be considered for chemical storage areas and certain raw materials. Paper bales, ideally should be protected by sprinklers that are suitably designed to cope with the height and located, in all cases, 3 meters above the level of bales stacked vertically (which should not exceed 5 meters height). Spark detectors in hoods, pipes and ventilation systems Dangerous sparks could be generated in several parts of the paper making process, which is why spark detectors must be installed in hoods, pipes, and ventilation systems. Water spray and CO2 systems can be used to protect machinery against these risks. Means to fight fires, like extinguishers and hose reels, should be provided to support fire brigades. All the elements should be properly identified and all personnel should be trained and made aware of the location of such devices. Importance of fire alarms Fire alarms are required in all paper mills and fire alarm call points should be provided in all locations, according to international guidelines, such as NFPA 72 or EN54. The spread of flames and smoke in paper, wood and chemical storage might become extremely fast. For this reason, early detection is critical. Many technologies might be applied in the different areas of a paper plant. Nevertheless, there are dusty or humid areas where regular heat or smoke detectors might fail under certain circumstances. For these areas, especially located outdoors, innovative state-of-the-art detection solutions might be applied, like Video Fire Detection (VFD). NFPA 72 standard for flame and smoke detection NFPA 72 provides guidelines to implement this technology for flame and smoke detection NFPA 72 provides guidelines to implement this technology for flame and smoke detection, opening interesting alternatives for designers and fire protection engineers. Many EHS managers and fire protection professionals selected VFD, because it is the only fire detection solution that effectively covered their needs. Many engineers, specialized in fire protection for paper plants, explained that they tested linear heat detection, aspiration smoke detection, IR/UV detectors and even beams, but none of these technologies performed as they needed on the dirtiest or more humid areas. Video Fire Detection (VFD) solutions Outdoor storage areas are often unprotected, because deploying flame or heat detection in large open areas can be costly and mostly ineffective. VFD solutions can detect smoke and flames in outdoor conditions, allowing the monitoring and protection of wood and paper bales in large areas. Fire detection and alarm systems should be designed with the following goals: Minimize risk of fires, including the use of fire detection technology in areas where regular detection technologies cannot be implemented or are not practical. Minimize risk of flame and smoke spread, with state-of-the-art detection algorithms that guarantee fast and effective detection. Also, reliable algorithms minimize the possibility of nuance or unwanted alarms. In case of a fire, fast detection gives occupants life-saving time to reach to a place of safety, before the flames and smoke have spread to dangerous levels. Global production of paper and pulp reached 490 million tons in 2020, with many industries and markets depended on the paper and pulp supply chain. That is why innovative ways to protect this supply chain, are key to sustain the paper market growth in the future.

Fire Protection Awareness Is Finally Off The Back Burner
Fire Protection Awareness Is Finally Off The Back Burner

The Grenfell tragedy has shocked the public and rocked the construction industry. The ongoing inquiry into the 2017 tower block fire has exposed huge flaws in existing practices across architecture, material specification, and building projects. It is also reinforcing the critical importance of fire protection. It took Grenfell, and admittedly the many years that have followed, for the industry to fully reappraise the product selection and testing regimes needed to ensure resident safety in buildings. Now, the tide is really starting to turn. Fire protection training Research we conducted across the UK, Germany, and France, in the aftermath of the disaster, revealed that knowledge levels surrounding fire and fire protection amongst some of our most trained professionals in architecture was very low. Across the three countries, only 3% of architects were able to correctly define the four basic fire protection terms: active fire protection, passive fire protection, fire resistance, and reaction to fire. Of the architects surveyed in the UK, 8% were able to define the four terms, in France, it was only 6%, and in Germany none. Hardly any of the architects interviewed, a mere 2%, said they’d had comprehensive fire protection training, most had some training, and less than one in ten (8%) say they’ve never had fire protection training. Fire-Protected buildings It was clear, post-Grenfell, that things needed to change, ensuring fire awareness is a top priority Our research confirmed that architects and specifiers had limited knowledge of fire protection and a lack of training in the area of designing safe, fire-protected buildings. It was clear, post-Grenfell, that things needed to change, ensuring fire awareness is a top priority, no matter how much time pressure industry professionals are under. And now they have. I believe that when COVID hit in spring 2020, a window of opportunity opened for fire protection awareness. Working together seamlessly Overnight, the majority of us were confined to our homes and adapting to working remotely where possible. For some businesses - such as ours here at Zeroignition - it had very little impact. Zeroignition is a global company and we have always operated remotely, enabling us to hire the best possible experts from around the world all working together seamlessly, remotely, and across 10 time zones. For other businesses, particularly architects, specifiers, and building consultants within the construction industry, this shift, which remains the same almost a year on, provided a very different way of working. A way that has now been proven to really work. Benefits of homeworking Online webinars have covered a variety of different topics including fire safety The benefits of homeworking are plentiful. One of the major benefits is time, a luxury many of us just didn’t have pre-pandemic. Now there’s no commute to work, to meetings, and to events. As exhibitions and conferences could not take place last year, many moved online, giving industry professionals the chance to engage and learn from the comfort of their own home, often at a time to suit their personal schedule. Since the outbreak of the pandemic last March, it has been reported that a whopping 49.2% of the British workforce were intent on investing time to actively further their learning. The NBS, (formerly National Building Specification) says it has seen a dramatic increase in webinar attendance. Eager participants include product manufacturers and also architects and specifiers. Online webinars have covered a variety of different topics including fire safety. Fire protection standards At Zeroignition we know that education is non-negotiable when ensuring buildings are built safely. Government regulations are being tightened to save lives, and as an industry, those of us in the business of design and construction must also continue to challenge ourselves to know more in order to meet incredibly high fire protection standards. Increased knowledge, coupled with a systematic approach - where products are seen together as a system, rather than individual components - would turn our methodology on its head for the better. Traceability is also a key component to add to the mix. One of the biggest failings unveiled by the Grenfell inquiry was the lack of traceability of products used for the building refurbishment. Investing in research and Development The introduction of a new regulator will help to ensure materials used when constructing buildings are safe This just wouldn’t happen in other industries such as aviation, or automotive, where every component of the structure is known and recorded. The introduction of a new regulator will help to ensure materials used when constructing buildings are safe, fit for purpose, and 100% traceable. Companies must be ready to stand up, take responsibility, educate themselves and invest in R&D to enable them to do things properly. The companies we’ve spoken to are willing to be more transparent, and share a product’s journey from testing, through to manufacture, installation, and maintenance, which is so important and really promising to see. Filling knowledge gaps From the very beginning, we’ve been challenging the industry to improve. To learn more. To try harder. To think differently. I can attest from our conversations with manufacturers that safety elements including fire safety have risen to the very top of the agenda. Never before have I seen companies so invested in R&D to enable them to build smarter, better, and safer – and consign appalling events like Grenfell to the history books. The pandemic has given the opportunity to invest time in filling knowledge gaps. So let’s continue to invest time in education and personal development to do better. Because it really matters. Change is imminent and safety is at the forefront.

How Is Digital Adoption Helping To Improve Fire Safety In Construction?
How Is Digital Adoption Helping To Improve Fire Safety In Construction?

As Grenfell remains a chilling reminder of the importance of fire safety in construction, new digital methods are now being adopted to guarantee the safety of end users. But how is digitization helping and how will this further advance fire safety during the wider construction process? There’s no doubt that the past five years have had a profound effect on the construction industry. Events such as the 2017 Grenfell Tower fire disaster have forced the industry to sit-up and rethink the processes it currently has in place. Campaign for a complete system overhaul The result has been a campaign for a complete system overhaul. Advocates for change, such as Dame Judith Hackitt, are now speaking at length of a ‘broken industry’ and how without major reform, the construction industry will never reach acceptable levels of safety. Yet hope is on the horizon and as is often the case with such events, they can and must serve as a catalyst for major change. Hackitt’s inquiry into building regulations and fire safety, following Grenfell, revealed a need for greater fail safes and a requirement for what Hackitt termed as ‘The Golden Thread’ of information. This is an accurate record of a building, providing a timeline of what has gone into the structure, from design to occupation and its ongoing maintenance. By having this in place, the industry can then deliver full transparency and accountability to help keep end users safe. Introduction of new building safety regulator Hackitt’s inquiry into building regulations and fire safety, following Grenfell, revealed a need for greater fail safesA further response has been the introduction of a new building safety regulator and new construction product regulator, both of which represent a landmark moment not just in fire safety, but improved levels of safety across the board. The first, which is under the Health and Safety Executive, will oversee the safety and performance of all buildings with a new, more stringent framework for higher-risk builds. The latter, (the construction product regulator), will be aimed at manufacturers to ensure that their products are safe, before being sold and that they abide by pre-determined levels of industry safety. If products aren’t deemed fit for purpose, these stricter measures will grant the regulator the power to remove products, revoke building safety certifications, as well as prosecute those who attempt to side-step rules. Building Safety Bill Speaking at the Construction Leaders’ Summit in February 2020, Hackitt explained that the Building Safety Bill and the creation of the new regulators will help the sector to change both technically and culturally, moving away from decisions that result in the ‘cheapest solution’, to one where safety and quality become paramount. Hackitt also warned that the regulators will have real bite. She said, “It will not look to see you have merely followed the rules, but check the building is safe from planning to occupation and you’ve done everything in your power to ensure this.” New laws post building regulations and fire safety review New laws have also been introduced since Hackitt’s review of building regulations and fire safety New laws have also been introduced since Hackitt’s review of building regulations and fire safety. In April of 2020, UK Housing Secretary, Robert Jenrick announced a series of measures comprising of what he called ‘the biggest change in building safety for a generation.’ These were changes that applied to multi-occupancy buildings of 18 meters and above, or six stories, whichever is reached first. For buildings in-scope, a duty holder regime will apply, with a Client, Principal Designer and Principal Contractor. The contractor and designers will have to demonstrate that the building is safe and the ability of the duty-holder to choose which building control body to oversee the removal of the construction/refurbishment. To make sure the regulation is followed, there are gateway points at various stages, requiring regulator sign-off before the project can move forward. The sign-off procedure can then only take place once the right evidence is in place. Before residents are allowed to occupy the building, a full digital documentation will have to be provided which includes drawings and datasets and any design changes will need to be amended, signed-off and recorded. The need for digital adoption It’s clear that with so many changes coming into play that a new way of working is needed, with the needle pointing towards digital adoption as an answer to these issues. One of its main benefits is that it gives specifiers, contractors and residents the ability to access extensive datasets on specific fire related products. This feature plays a huge role in guaranteeing the safety of buildings and end users, by supplying them with the most up-to-date information and the latest in industry laws and regulations. If the industry is to iron-out the risk of products being ‘mis-specified’, then architects must be given a vehicle to access this information as easily as possible. Rise in use of digital tools, 3D and data Another example is the recent changes to the RIBA Plan of Work – the industry blueprint for the process management of a build. While this still remains as the ‘go-to’ map for how a construction process should take place, digital innovation continues to transform many aspects of its project workflow. This can be seen in the likes of ‘Part 3 – Changing Processes’ where the use of digital tools is helping to shift the balance away from 2D information towards 3D and data. Digital site surveys are also becoming the norm, using cloud surveys, photogrammetry, lidar sensors and the ability to mount cameras on drones, to help with the success of projects. BIM (Building Information Modeling) BIM can be used to improve the design, construction and operation of buildings, making them safer for end users Feeding into this is also the greater use of BIM (Building Information Modeling). This digital approach can be used to improve the design, construction and operation of buildings, making them safer for end users. Again, it’s a concept that has been around for some time, but the recent shift in perceptions has allowed this way of working to flourish, with three quarters of specifiers now using BIM, compared to just one in ten a decade ago. Digitization – The only way forward It’s obvious to see that shifting to digital has an immeasurable benefit to the future of the construction industry. Not only do digital tools improve standards, reduce mistakes and improve record keeping and auditing at every stage, but it also keeps costs down and drives up quality. From previous history, we’ve seen that the construction industry is notorious for dragging its heels when it comes to change, but as we’ve seen so far, the quicker it adopts this way of thinking, the quicker improvements in fire safety and compliance can be achieved. ‘Build Back Better’ We’ve heard the government talk of ‘Build Back Better’ and the digitization of the industry will hold all the keys to ensuring this is possible. If nothing else, the construction industry owes it to the victims and survivors of the Grenfell fire tragedy to make sure that all is being done to eradicate the chances of future mistakes from happening again.

Latest Morley-IAS news

Fire Industry Manufacturers’ Expo Will Host Seminars And Display Products And Developments In The Fire Industry in 2019
Fire Industry Manufacturers’ Expo Will Host Seminars And Display Products And Developments In The Fire Industry in 2019

The next Fire Industry Manufacturers’ (FIM) Expo which will take place Wednesday 16th October, 2019. This time the FIM Expo will take place at Sheffield United Football Club. Organized by the Fire Industry Association (FIA), FIM Expo features many of the UK's pioneer fire detection and alarm manufacturers and focuses on showcasing the latest products and developments in this sector of the industry.A wide range of exhibitors are confirmed so far: Advanced Global Fire Equipment Ampac Haes Systems Apollo Hochiki Baldwin Boxall Kentec BAFE Lan Control Systems C-Tec Morley-IAS Eaton Nittan Eurotech SSAIB Everlux Sterling Safety Systems FFE Vimpex FirePro Xtralis Fire protection systems Fire protection systems The FIM Expo is for anyone working in this area, whether as an installer or maintainer of fire detection and alarm systems, a manager of such systems in commercial premises or as an architect or person specifying what type of fire protection systems should be installed in a building. The FIA will also be hosting two free, CPD accredited, seminars at the Expo. Both sessions will focus on key topics affecting FD&A world. Those interested can meet the Membership Manager and enquire about the benefits of FIA membership First session will start at 10am and Will Lloyd, Technical Manager at the FIA will present the ‘Overview of the Changes to: BS 5839-6:2019’. Second seminar will start right after lunch at 1pm and Ian Moore CEO of the Fire Industry Association will give an introduction to the Interim Report of the Industry Response Group following on from Dame Judith Hackitt’s post Grenfell Tower Review. Fire protection training and qualifications The Fire Industry Association will also have a stand, so that those interested can meet the Membership Manager and enquire about the benefits of FIA membership (which includes discounts on fire protection training and qualifications, and the possibility of a stand at FIM Expo).Chris Tilley, FIA Membership Manager comments that: “Competency and how you prove it is at the forefront of everyone’s mind right now, and if it’s not then it should be. At FIM Expo this October the FIA have invited BAFE and leading certification bodies to offer you a one stop shop solution. Come and visit us to get expert industry advice on how best to achieve competency for your company and engineers”. With an average of 25 exhibitors over the last few years, FIM Expo has grown to become the best local expo for the fire industry. FIM Expo is open from 08.30 to 15.30 on Wednesday 16th October and is free to attend. Parking and refreshments are also available free of charge, including a buffet.

Morley-IAS ZX5SE Control Panel Based Fire Detection System Protects Chester Zoo
Morley-IAS ZX5SE Control Panel Based Fire Detection System Protects Chester Zoo

Also, Honeywell D1 system and All-Spec air sampling device were installed at the zoo In 1930, George Mottershead bought Oakfield House in Chester, along with seven acres of land, for the grand total of £3,500. He then visited a zoo in Manchester and what he saw that day inspired him to create ‘a zoo without bars’. George opened Chester Zoo in 1931 with his family and a small group of animals, never forgetting the vow he made. By the time he died in 1978, aged 84, Mottershead’s dream of a ‘zoo without bars’ was well and truly flourishing. Fast forward to 2015 and with more than 12,500 animals in 125 acres of award-winning zoological gardens, Chester Zoo is one of the world’s top attractions of its kind. 1.4 million people visit every year and its mission is to be a major force in conserving biodiversity. The latest attraction is Chester Zoo’s Islands, which aims to transport visitors to the South East Asian islands of Panay, Papua, Bali, Sumba, Sumatra and Sulawesi. Work began on the £40m, 60,000m² development in 2013 and it has taken almost two years and thousands of working hours to build. The largest indoor zoo exhibit in UK history, Monsoon Forest is the centrepiece of the Islands and the second phase of the project to be completed. Islands gives visitors the chance to take a walk or boat ride past turtles, Sumatran tigers, cassowary birds and many other species, as well as through bamboo copses and rice paddies. It is also home to the Sundra gharial, one of the world’s largest crocodiles, whose habitat is cleverly set out so these remarkable creatures can be seen both above and under the water through spectacular glass viewing windows. An advanced PA/VA and fire detection solution Crown House Technologies (part of Laing O’Rourke) is the M&E contractor for the Islands project and sub-contracted Morecambe based Cook Fire & Security Ltd to provide the fire detection system for the Monsoon Forest. Joe Weiss, ‎Technical Director at Cook Fire & Security, states, “Over the last 14 years we have become one of the leading installers of state-of-the-art solutions throughout the north-west of England and beyond. We have been involved in some highly prestigious projects but the Monsoon Forest was a unique environment and required some significant thought about the best way to protect, staff, visitors and, of course, the animals.” A Honeywell D1 system allowed Cook Fire & Security to combine advanced audio management with a flexible architecture to deliver an advanced PA/VA solution at Monsoon Forest. Generally, this type of technology is utilised in public or larger buildings and, following the detection of smoke or fire, automated messages control the flow of people, allowing an orderly evacuation without panic. However – as animal welfare is at the very heart of Chester Zoo’s activities - one of the key priorities was to have a PA/VA system that could alert staff and visitors without causing distress to the creatures living there. Joe Weiss comments, “Obviously, the animals are used to the sound of human voices, so we felt that a PA/VA system would be more appropriate than the type of loud siren commonly used.” Monsoon Forest is entirely enclosed and with temperatures reaching highs of 80°F, this level of humidity meant that a great deal of consideration had to be given to the most suitable fire detection system. A solution based around the Morley-IAS ZX5SE control panel was installed in the keeper’s section, as it is intuitive to use and easy to install, network, configure, maintain and expand. The public areas, however, required a solution that could offer high levels of false alarm prevention while blending in with the tropical surroundings. An aspirating smoke detection system Explaining the thought process, Weiss says, “Due to the height of the roof, access for installation and maintenance of a conventional or addressable system would have been problematic. Also, the high levels of moisture would have also been a problem and could have triggered false alarms. Therefore, an aspirating smoke detection system was the most suitable option.” A Honeywell All-Spec system was chosen and Martyn Keenan, Business Manager (North West) for Morley-IAS says, “As a universal air sampling device for a broad range of applications, All-Spec makes it possible to achieve a cost effective solution in accordance with EN 54-20. This allows the devices to be used in areas where other smoke detectors and air sampling smoke detection systems are no longer suitable, such as Monsoon Forest. By putting water traps on all pipework going back to the control panels, an extra level of false alarm detection has been achieved.” A highly innovative way of installing the system was employed, as the pipework was fitted when the roof interior was on the ground and then hoisted into position. This eliminated the need for access equipment and ensures that the environment will not need to be disturbed during any planned maintenance. Aesthetics were also important and white plastic was used to ensure that the system blended into the overall appearance of the roof structure. Ian McIntosh, health & safety manager at the zoo at Chester Zoo is delighted with the fire detection system that has been installed, and concluded, “The response to Monsoon Forest since it opened has been terrific and it is now a key part of the Chester Zoo experience. However, we also value the role that technology plays in keeping our staff, visitors and animals safe, which is why having Honeywell fire detection technology installed by Cook Fire & Security gives us peace of mind.”

Morley-IAS By Honeywell Voice Alarm System Protects City Of London School
Morley-IAS By Honeywell Voice Alarm System Protects City Of London School

Security alert buttons have been installed at first-floor staff entrance along with a fire microphone The 1,000 pupils and staff at the 570-year-old City of London School – one of Britain’s most photographed educational establishments – are now protected by a Morley-IAS by Honeywell voice alarm system. Installed by Ardent Fire & Security in a major overhaul of voice alarm and public address technology, the school, which is on the Thames embankment near St Paul’s Cathedral, now has a highly customised system that provides safety cover throughout its prominent site. A highly-customised Honeywell voice alarm system Replacing the previous obsolete system, Ardent, a Morley-IAS distributor, installed the Honeywell D1 rack and amplifiers along with 32 new speakers and new alert buttons. The buttons can be pressed to trigger specific public address messages in locations such as the swimming pool area and playground, while announcements can be made from both the reception desk and the office of the head teacher’s personal assistant. In the event of an alert, one of 18 separate safety messages is issued over the system, each of which is tailored to the school’s particular requirements. This allows disruption to be kept to a minimum, without compromising safety. In addition, security alert buttons have been installed at the first-floor staff entrance along with a fire microphone for the use of emergency services. As well as installing new speakers to ensure coverage is provided throughout the school, Ardent also optimised the operation of the in situ public address speakers. With its origins in the reign of Henry V, the school occupies a prominent site close to the Millennium Bridge, making it possibly the most photographed school in the UK. An independent day school owned and governed by the City of London, its former old boys include Sir Walter Raleigh and long-serving 20th Century Prime Minister Herbert Asquith. Integrated existing fire protection system, Morley-IAS control panel, and PA system The work was completed in two-and-a-half weeks during the Easter holidays and followed Ardent’s successful upgrade of integration between the existing fire protection system, a recently installed Morley-IAS ZX5Se control panel and the public address system. “The D1 system has amazing software with incredible flexibility – meaning it could do all that the school required,” said Adam Sutherland, Ardent director. “Any other system would have required a huge amount of re-cabling, but the D1’s sensitivity means it can work superbly with the existing infrastructure.” Currently based in Chelmsford, Ardent Fire & Security has staff with long industry experience, providing a full range of fire system expertise including PA systems and large network panels.

vfd