The challenging year of 2020 has identified that international cross-border cooperation related to the prevention of and the response to wildfires is more important than ever. With landscape firefighting missions moving through Europe, there’s no surprise that the pan-European rescEU Commission has recently received a significant investment boost to expand its aerial firefighting capability.

Tangent Link Ltd, organizers of the internationally acclaimed series of aerial firefighting events is pleased to announce that the next Aerial Firefighting Europe Conference and Exhibition will take place on 12 – 14 October 2021 in Tartu, Estonia.

Providing exceptional opportunity

Hosted in Northern Europe for the first time, the event will provide an exceptional opportunity to share best practice between new and mature markets. The new venue boasts modern event facilities for a dedicated conference, exhibition, private workshops as well as opportunities for static displays.

The event will provide an exceptional opportunity to share best practice between new and mature markets

Chaired by Professor Johann Georg Goldammer, Director of Germany’s Global Fire Monitoring Center (GFMC), the two-day conference will take place at a time when the current pandemic – unprecedented in recent history – and the increasingly noticeable impacts of climate change are challenging Europe and the world. Over the last years, Europe’s natural and cultural landscapes – including the society living therein – have become increasingly vulnerable to wildfires.

More severe wildfires

In preparation for the event, Professor Goldammer has agreed to share his insights into the conference agenda topics. In the Euro-Mediterranean region, larger and more severe wildfires often are difficult to control. Similar trends are observed in other regions of the world with similar climate and vegetation features speak for themselves, for instance Australia or California.

Until a few years ago, the climatic conditions in Central, Western Atlantic, Northern and Eastern Europe were advantageous. The fragmented and intensively cultivated landscapes, forests and protected areas experienced limited numbers of usually small-sized wildfires. More than a decade ago, the first warning signals came from the United Kingdom and Ireland, where the humid Atlantic climate began to change – along with an unprecedented amount of wildfires affecting moorlands, heathlands and forests.

Fire management methods

Central and Northern European countries need to adjust to a new reality

Beginning in 2018, recurrent, long-lasting droughts affected the vitality and resilience of forests, agricultural lands and other open landscapes of Central and Northern Europe. Widespread desiccation of vegetation cover, associated with dramatically lowered soil moisture and water tables, created conditions favourable for wildfires.

Central and Northern European countries need to adjust to a new reality. This is calling for sharing expertise with other regions of Europe and the world, where experience in fire management methods had evolved over decades. The conference will provide a forum for exchanging expertise and visions for the future of landscape fire management. Conference contributions from Europe and North America will address the advances in technology development and the integration of aerial resources into concepts of building sustainable concepts of integrated fire management.

Aerial firefighting resources

Lessons identified during cross-boundary cooperation in fire management in Europe during the peak of the pandemic are another theme of the conference. Representatives of the European Commission will present the opportunities for sharing aerial firefighting resources in the frame of the rescEU agenda, which is an activity of the EU Civil Protection Mechanism.

The conference will also shed light on special problems of fire management

The aim of rescEU is to strengthen European preparedness for disasters and sharing capacities to respond to forest fires, medical emergencies or chemical, biological, radiological, and nuclear incidents. In terms of wildfire related information – early warning and monitoring of wildfires – the European Forest Fire Information System (EFFIS) provides support to rescEU. The conference will also shed light on special problems of fire management: Europe is bearing extended landscapes that are contaminated by the heritage of armed conflicts – unexploded ordnance (UXO) stemming from the World Wars, the Cold War and other recent conflicts.

Dedicated exhibition area

In addition, fires burning on territories contaminated by industrial waste or accidents, including radioactively contaminated areas of Eastern Europe, pose a special threat to society and fire and rescue personnel. Aerial Firefighting Europe 2021 will include a dedicated exhibition area which will offer the aerial firefighting technology providers the much-needed opportunity to meet face-to-face with new and existing clients and showcase their products to the global audience. Confirmed participants include DynCorp International LLC, Viking Air Limited, Conair Group, Perimeter Solutions, Fireboss LLC, Antavia Ametek, Columbia Helicopters, Inc., Overwatch Imaging, Airtelis, Ansett Aviation and Collins Aerospace among many others.

After a challenging time, Aerial Firefighting Europe 2021 will enable the aerial firefighting community to reconnect, share knowledge and define strategies for the global aerial firefighting market. Tangent Link Ltd has embraced the subject of Aerial Firefighting for over a decade with events taking place in key wildfire afflicted countries such as Greece, Croatia, USA, Spain, Australia, Canada, Italy and France since 2008.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

What Impact Has COVID-19 Had On The Fire Industry?
What Impact Has COVID-19 Had On The Fire Industry?

The COVID-19 pandemic has had ramifications for almost every industry, some more than others. With the pandemic stretching well into a second year, the non-medical consequences continue, and many are wondering about which of the required changes might become permanent. As regards the fire sector, we asked our Expert Panel Roundtable: What impact has COVID-19 had on the fire industry?

Keeping The Fires Out And The Lights On
Keeping The Fires Out And The Lights On

The UK’s demand for sustainable heat and power sources is increasing rapidly. This is seeing a growing dependence on renewable energy sources for electricity, and, as we’re facing a landscape of constrained power generation, consistency of this power source is becoming a key concern. Fire is an evolving risk for power stations. It can cause prolonged outages, which are damaging to sites’ personnel, equipment, and fuels. However, these fires are very common. James Mountain, Sales, and Marketing Director, Fire Shield Systems, looks at the current system underlying fire safety for power stations, exploring why a new approach is needed.   Traditional Fire Safety guidance  Over the past ten years, The National Fire Protection Association’s NFPA 850 Recommended practice for electric generating plants and high voltage direct current converter stations has been seen as the exemplar internationally for fire safety at power generation sites. These recommendations sit alongside a complex mix of regulations managing the fire protection across sites that create power from combustible feedstocks. Those feedstocks can either be derived from organic sources, including wood and agriculture or refuse sources, including household waste. The exploration of alternative systems is limited, but different fuels and processes need different suppression, detection, and monitoring systems to remain effective. However, chapter nine of the guidance dedicates only four of its 70 pages to the fire risks specifically pertaining to the handling and storage of alternative fuels, a rising concern for the power generation industry. Practical experience of advising on the fire safety for sites handling these fuels has revealed a conflicting array of approaches to risk mitigation, many of which are guided by the owner, led by the insurance industry. For the insurance industry, the main concern is protecting fuels, assets, and equipment. However, insurers often rely on more traditional methods to offer that protection, such as sprinkler systems, despite these not always being suitable in protecting certain types of feedstocks. The exploration of alternative systems is limited, but different fuels and processes need different suppression, detection, and monitoring systems to remain effective. To better address, the growing challenges faced, best practice legislation and guidance for power generation sites needs to reflect real work scenarios, including the myriad incidents which have occurred throughout the past decade.   What are the risks When Dealing with alternative fuel?  When it comes to dealing with alternative fuels, storage, movement, processing, and transportation all present significant fire risks. These risks become more complex with alternative fuels compared with others as, to protect the site effectively, there’s a need to understand their unique properties, consistencies, ingress of hazardous materials, and their reactions on contact with water and foams. When it comes to dealing with alternative fuels, storage, movement, processing, and transportation all present significant fire risks The myriad risks, from carbon monoxide (CO) emissions to large explosions, are guided by an equally complicated set of fire safety guidance. Research into the safe handling and storage of these fuels, and the most suitable mitigation measures to offset the risks, is ongoing. Detecting and monitoring heat within alternative fuels when stored is also challenging, as the material is also an insulator. This means fire and heat are often difficult to identify in their early stages, prior to a blaze taking hold. Some types of alternative fuels are also prone to self-combustion if not monitored carefully. The risk of fires burning slowly within these materials is the topic of a major study from Emerging Risks from Smouldering Fires (EMRIS) between 2015 and 2020. The need for new best practice guidance in fire safety As methods for generating renewable power mature, and new technologies and research emerge, fire safety guidance needs to be updated to reflect this. This is not only a UK-wide challenge, but it’s also recognized across global and European standards. Regulations need to take into account a range of factors to ensure protection systems are effective in practice. The development of renewable power sources requires revision of fire safety guidance. Now, a decade on from when the NFPA 850 was first published, it’s time to revisit its guidance and focus on building a more resilient, fire-safe future for all of the UK’s 78 biomass and 48 waste to energy sites. This involves greater clarity pertaining to the specific risks associated with alternative fuels, such as waste and biomass-derived fuels. The approach needs to be comprehensive, looking at every aspect of designing, installing, and maintaining systems.While the power generation industry remains reliant on outdated and complex guidance, with conflicting approaches to best practice protection, the potential for systems to fail is clear. That robust approach relies on multiple stakeholders working together – including the regulators, government, academics, technology partners, and fire safety professionals. Collaboration is key to build long-term confidence in the safety of sustainable fuels in powering our homes, transport, and industries in the future.

Spot Fires Before They Start: Thermal Imaging For High-Risk Sites
Spot Fires Before They Start: Thermal Imaging For High-Risk Sites

Waste management sites are particularly vulnerable to fires, with hundreds reported every year, just in the UK. The materials stored in a waste heap make them particularly risky environments. ‘Hot spot’ fires, as they’re called, can be caused by chemical waste, flammable items, or the heat caused by the natural breakdown of organic materials.  A blaze can start quickly and without warning, building into a major issue that can threaten lives and livelihoods. And not only that - but in many cases, insurers now require sites to be putting additional updated fire prevention measures in place, in order to validate their existing policies. All this makes it more important than ever to have effective prevention and detection measures on-site, with the ability to extinguish fires swiftly should they develop. Preventing poor prevention Early detection is vital for preventing the dire consequences of a fire. The traditional approaches - manual inspection, gas detection, or basic thermal monitoring - all come with major limitations. Thermal camera prevention software can instantly detect when temperatures are outside of the normal range They all take time and, to be honest, they’re all pretty unreliable. Waste piles can often be many meters deep. When you smell the smoke or see the flames, it’s too late. The damage has already been done and by that stage, you’re long past prevention. Real prevention needs to start earlier, and deeper below the surface. It is said that necessity is the mother of all invention - and out of this need to keep sites safe comes high-resolution fire prevention thermal imaging. Thermal Cameras Thermal cameras from manufacturers such as FLIR, can constantly monitor temperatures across a site. They are highly sensitive to temperature, being accurate to within half a degree centigrade, and programmed to detect heat signatures deep below the surface. This type of prevention software can instantly detect when temperatures are outside of the normal range. A flame will develop at 122 degrees centigrade. If you can catch an elevated temperature and lower it before it reaches that stage, you can stop the fire before it even begins. Oscillating Water Cannons Should the temperature in any area rise enough to become a fire risk – typically 60 degrees centigrade or above – thermal imaging cameras can trigger an alert, informing the operator.  It can be combined with location monitoring software for fast identification of possible ‘hot spots’, and even connected to automated, oscillating water cannons which can locate and extinguish hot spots in seconds. The system will then activate a pair of automated, oscillating water cannons, spraying the affected area to reduce the temperature or extinguish the fire. Distinguish before you extinguish False alarms are a risk with thermal systems. The last thing you want is a sprinkler system going off because a camera detected the heat from a vehicle exhaust. The latest systems can be programmed to distinguish between acceptable heat signatures, such as vehicles, and genuine potential fire risks. On-site fire prevention can now be safer, more reliable, and more efficient, with fewer false alarms Solutions like this have been developed recently by UK machine vision integrator Bytronic, fire prevention imaging supplier Thermascan, and Swedish firm Termisk Systemteknik, using FLIR technology to create a reliable and automated solution to keep sites safe, with rapid detection at a temperature level. In one site, the water cannons were programmed to adjust water pressure and reach based on the location of the hot spot, before automatically deactivating once the temperature has cooled sufficiently. Meanwhile, the thermal cameras – which can detect fires even through thick smoke – monitor the progress of a fire beyond what’s visible with the naked eye. The future of fire prevention? For sites used to manual inspection and sprinkler systems, this technology could be a step-change. The old ways may have been partially effective, but were more likely to be overly sensitive and not targeted to the affected areas, taking more time and potentially causing water damage and pollution elsewhere. With newer automated, thermal imaging solutions, on-site fire prevention can now be safer, more reliable, and more efficient, with fewer false alarms. When hot spots occur, they can be swiftly extinguished with pinpoint accuracy, limiting water waste, property damage, and environmental pollution. It can mean the difference between a successful insurance payment or a significant financial hit, should the worst happen. But with the proper prevention, that worst situation may never occur.