Download PDF version

Fire missions, rescue missions, work missions: the new L32A-XS 3.0 turntable ladder from the Dresden fire brigade is not only equipped for one, but for a wide variety of purposes. Compact dimensions, very good maneuverability and at the same time high performance - these are the characteristics of the XS turntable ladders Rosenbauer since their market launch a few years ago.

The concept of the turntable ladders with tilting jib was continuously developed by Rosenbauer. In the current 3.0 version, the vehicle impresses with its sophisticated technology, many possible uses, simple operation and extremely high safety standards.

Aluminum safety platform

The L32A-XS 3.0 for the Dresden fire brigade is built on a Scania chassis with a Euro VI engine and 280 hp. On top of this is an aluminum safety platform with integrated lighting, six equipment rooms and two additional storage compartments.

The maximum working height is 32 meters; the cage floor height when fully extended is 30.3 meters

The heart of every turntable ladder is of course the ladder set: In this case it consists of five parts including a tiltable cage arm, is controlled by a CAN bus system and is equipped with a 3D load measurement system so that all loads and forces acting on the ladder can be permanently monitored view has. The maximum working height is 32 meters; the cage floor height when fully extended is 30.3 meters.

Power supply system

The HR-500-MF rescue cage is the ideal tool for rescue operations of all kinds thanks to the removable multifunctional column, four entrances and stretcher mounts. For firefighting from the cage, it is also equipped with a RM8 water cannon with a capacity of up to 2,000 l / min.

In addition, a wide variety of electrical devices can be used in the rescue cage thanks to the power supply system (230 V / 400 V). A lifting eye with a lifting capacity of up to four tons is attached to the lower ladder for work or rescue operations, and a load of 600 kg can still be lifted and moved at the top of the ladder. The tilting jib of the L32A-XS 3.0 means that the range of applications for the turntable ladder is enormously expanded.

Main control station

The M500 main control station is covered and equipped with an inclinable backrest

For example, the rescue cage can also be perfectly placed on the side of the roof ridge facing away from the street, if necessary. And underground operations, in which the rescue cage is brought below the level of the vehicle, are also possible. In keeping with the Rosenbauer tradition, when designing and equipping the L32A-XS 3.0, care was taken to ensure that operation was simple, intuitive and safe. The M500 main control station is covered and equipped with an inclinable backrest in order to offer the operator a good view and appropriate comfort during longer-term operations.

In addition, one can fall back on various assistance systems that make operation significantly easier: the automatic return of the ladder set to the ladder rack, the automatic return function (ARF), the target memory system TMS, which enables the same rescue cage position to be controlled automatically and repeatedly or the vertical rescue system VRS, with which vertical movements of the ladder set are made much easier.

Raising rescue cage

For example, when one raises the rescue cage on a facade and bring it into position. The entire lighting of the L32A-XS 3.0 is made with LED technology and ensures a very good view and thus more safety when deployed in the dark.

There are also two powerful LED floodlights on the rescue cage, with which the area of ​​use can be perfectly illuminated. In a nutshell: The L32A-XS 3.0 is an extremely well-equipped and versatile vehicle which, thanks to the multitude of possible uses, is an indispensable part of the Dresden fire brigade's fleet.

Download PDF version Download PDF version

In case you missed it

Teledyne’s Handheld Laser Detects Explosive Methane From 100 Feet Away
Teledyne’s Handheld Laser Detects Explosive Methane From 100 Feet Away

A new handheld device can detect the presence of explosive methane gas from up to 100 feet away. For firefighters, the tool provides situational awareness, saves time, and ensures safety from a distance. Knowing the presence of methane gas enables a firefighter to deal with an emergency gas leak and to avoid a deadly explosion. Gas laser The Gas Laser from Teledyne Gas and Flame Detection can shoot a laser beam through a window, a gap in a door, or another common venting point to provide an instant reading of the amount of methane in an area up to 100 feet away. The laser is invisible, but a green-spot pointer guides the aim as a user “points and shoots.” The laser bounces off any reflective object and then analyses the parts per million (ppm) of methane gas per meter of distance along the path of the laser. It measures down to a threshold of 1.25 ppm/meter. The handheld device can also capture a video image and a GPS location in addition to the gas reading stored on the device. It can be connected via WiFi and/or Bluetooth to a smartphone or other device and has onboard data logging. The device is automatically calibrated and tested when it is returned to its case. Detects minute quantities of methane Gas laser detects a much smaller amount of methane than would be explosive, thus preventing explosions  “It’s a brand new device, and everybody wants it,” says Alan Skinner, Regional Manager, Portable Gas Detection for Teledyne Gas and Flame Detection. “Once they understand what it does, they want it. Now you don’t have to be inside a hazard to detect the hazard.” The Gas Laser detects a much smaller amount of methane than would be explosive, thus preventing explosions by addressing leaks early.  The lower explosive limit (LEL) for methane is 5 percent, the equivalent of 50,000 ppm, much higher than the measurement threshold of the Gas Laser. Previously, there was no entirely safe method of evaluating the gas concentration without being near an area, typically using a three-foot probe sensor, for example.  “Now they know what they are getting into before they enter,” says Skinner. “It saves a huge amount of time.” Understanding working of gas laser Getting the word out about the device has been a challenge given the continuing coronavirus pandemic and disruptions of the hurricane season. “It’s one of those products you have to show them and let them play with it to understand what it does,” says Skinner. Interest was high at the recent FDIC show, where Teledyne unveiled the new sensor alongside its broader range of gas detection sensors. Teledyne’s range of portable sensors traces its roots back to GM Instruments (GMI), founded in Scotland in 1947. The sensor company was involved in multiple mergers and acquisitions in recent years, including ownership by companies such as Battery Ventures, Tyco, Scott Instruments, Johnson Controls, and 3M. Two years ago, the product line was acquired by Teledyne and represents the portables segment of their Environmental Monitoring Division, which also includes Detcon, Simtronics, and Oldham. Protege ZM and PS200 sensor PS200 sensor measures levels of four gases – methane, oxygen, carbon monoxide, and hydrogen sulfide Another sensor among Teledyne’s range of handheld devices is the Protégé ZM, a carbon monoxide sensor that a fireman can clip to their helmet, pocket, or bag. The “disposable” device has a 24-month lifespan, requires zero maintenance, and provides a calibration and bump test. The PS200 sensor measures levels of four gases – methane, oxygen, carbon monoxide, and hydrogen sulfide. An internal pump extracts a sample before a firefighter enters a confined space. A charge, bump, and calibration station (ABC Station) ensures calibration on a weekly, monthly, or twice-yearly basis. PS500 and GT Fire sensor The PS500 model adds another sensor to the four – typically either a photoionization detector (PID) for volatile organic compounds such as benzene, or a hydrogen cyanide (HCN) sensor to measure the presence of carcinogenic compounds that can be a byproduct of burning vinyl or plastics. The PID sensor can help investigators detect propellants that might indicate arson. The GT Fire sensor detects explosive gases in the PPM/LEL ranges with optional CO, H2S, and O2 sensors. The device can sniff out small gas leaks before any LEL level is reached. Able to find leaks in the PPM range, the device can pinpoint exactly where gas is leaking.

Revising The Rules Of Evacuation
Revising The Rules Of Evacuation

It is the legal duty of the responsible person in any building to make the evacuation of disabled people equal to that for able-bodied people, as Anthony Smith, Managing Director of Vox Ignis, explains. When the Disability Discrimination Act (DDA) was first introduced in 1995, it gave disabled people long overdue access to goods and services, education, employment, transport and accommodation. This was, subsequently, incorporated into the Equality Act in 2010. Evacuation of mobility impaired people Sadly, despite its many benefits in access to goods and services, one area the act failed to address was the evacuation of mobility impaired people, in the event of an incident, leading to the Government and Disability Rights Commission to publish a guide of supplementary information for the fire risk assessment for Disabled People in 2007. The guide highlighted that the Fire and Rescue Service’s role in fire evacuation is that of ensuring that the means of escape, in case of fire and associated fire safety measures provided for all people, who may be in a building, are both adequate and reasonable, taking into account the circumstances of each particular case. Fire risk assessment of buildings It is the responsibility of the person(s) having the responsibility for the building, to provide a fire safety risk assessment Under current fire safety legislation, it is the responsibility of the person(s) having the responsibility for the building, to provide a fire safety risk assessment that includes an emergency evacuation plan for all people likely to be in the premises, including disabled people and how that plan will be implemented. As a member of BSI FSH/12/5, which covers Voice Alarm and Emergency Voice Communication Systems, and as Managing Director of Vox Ignis, a manufacturer of disabled refuge and fire telephone systems, Anthony Smith has long lobbied for the amending of BS9991 and Building regulations approved document B1, to make it compulsory for dwellings above one floor to have disabled refuge areas, with an Emergency Voice Communications System (EVCS), as commercial buildings, ensuring residents can communicate with building management, in the event of an incident, such as fire. As a member of BSI FSH/12/5, Anthony Smith has long lobbied for the amending of BS9991 Clear and secure communications vital in emergencies In such emergencies, it is vital that communication is clear, secure, monitored and maintained. These systems can be the difference between life and death. In the wake of the Grenfell disaster, many in the industry, including Anthony Smith, believed it would only be a matter of time until such critical amends were made. However, four years on, it looks as though the industry, fire services and general public may finally be seeing their persistent rallying result in action, transforming this outdated mandate. Importance of refuge areas in buildings Lifts, escalators and platform lifts may have transformed the way that people with mobility issues access buildings While responsible building owners and there are some out there, are already establishing refuge areas in dwelling houses, the revision of BS9991 in the next year, could finally spell the end of such crucial health and safety measures being optional, and make it a requirement for residential buildings, but it will take a change to the Building Regulations Approved Document B1 to change the law. Lifts, escalators and platform lifts may have transformed the way that people with mobility issues access buildings. However, more often than not, they are completely redundant in an emergency, which is why refuge areas hold the key to ensuring the safe and orderly evacuation of people from buildings, in the event of a crisis. Key role in promoting disabled refuge areas Here at Vox Ignis, we’ve witnessed this first hand. Working with property developers across the globe, we’ve helped establish disabled refuge areas, in a wide range of developments, from skyscrapers to hotels and high-rise residential towers, and are starting to be involved in projects in this country with residential towers, notably in Croydon. Although, in both of those instances, the client wasn’t bound by law to include EVCS for the disabled refuge areas in their developments, it goes to show that many forward-thinking and responsible developers are already embracing the latest in evacuation and fire safety technology, however, as an industry and as a nation, we can ill afford to rest on our laurels. Of the 72 people who died in the tragic Grenfell fire disaster, more than half of the casualties were adults with limited mobility or children, according to evidence shared in the latest phase of the inquiry, and we can only hope that, if the proposed revisions to BS9991 are approved, and Approved Document B1 is amended, we can finally put the relevant measures in place, in order to make high-rise residential buildings safer for all, once and for all.

Keeping Fire Personnel Connected And Safe Using Wireless Mesh Networks
Keeping Fire Personnel Connected And Safe Using Wireless Mesh Networks

In their daily lives, fire personnel must be brave, forward-thinking, and strategic when tackling fire emergencies. However, the most crucial part of a successful fire operation is the communication between the crew, the central command center, and the people in need of rescue when in mission-critical, and often life-threatening situations. Whether this location is a large-scale wildfire, a high-rise building or even a house, continuous connectivity can be the mitigating factor on success or failure when it comes to ushering people to safety. It was estimated by the National Fire Protection Association (NFPA) that US fire crews respond to a fire situation every 24 seconds across the nation. Still the number of fire-related fatalities has dropped significantly when compared to figures from the 1970s. Of course, this is due to the more robust communications systems and high-quality fire equipment available today, but all of this relies on stable and fail-proof connectivity. Unwavering connectivity can prevent fatalities If fire personnel are to provide an effective and real-time response to any fire safety emergency, they require constant visibility and communication at all times. Any operation interruption, faltering connection, or unreliability can cause panic, uncertainty, and even danger. Furthermore, a robust, mobile connection allows for direct correspondence to control rooms, which can facilitate additional equipment, vehicle, and team members to be deployed. An unreliable connection presents hurdles to fire personnel as it restricts access to vital information and applications, which will inevitably hold firefighter crews back from receiving real-time data that is essential in critical situations. Most importantly, new technology is emerging, aiming to minimize firefighter danger and increase the overall visibility of sites. The more powerful the applications are, the more bandwidth is required to support them. If a network has insufficient bandwidth capacity, real-time access to files, such as on-scene video, critical communications, and aerial imagery, may not be possible. In addition, on-the-move visibility is essential in providing firefighters with the inclusive situational awareness they require when dealing with a range of life-threatening incidents, whether this be sprawling wildfires, vehicle accidents, or domestic fire situations. The wireless mesh that enables critical communication Rajant Corporation has worked with many emergency personnel and equipment providers in helping them communicate reliably with its Kinetic Mesh® wireless network. Comprised of multi-frequency network nodes that solidify the connection, the network allows for complete mobility and range, enabling fire crews to communicate wherever they are without the threat of interrupted connection. It is paramount with any public safety operation that a wireless mesh is fast in transmitting real-time data and completely secure from any cybersecurity threat. In addition to providing complete mobility, the network can support innovative equipment and wearable technology that can significantly increase safety and security in mission-critical situations. An example of this is Rajant’s partnership with communications provider Vorbeck. Equipped with Rajant’s ES1 BreadCrumb® wireless radio, the wearable Vorbeck HD4 communications harness facilitates live streaming of video, voice, and data to personnel in ‘hot zones’, these being hard-to-network areas or places with no network infrastructure. As the network can work peer-to-peer with all other Rajant BreadCrumb nodes, this extends the range of connection tenfold, keeping personnel safe and protected as they undertake their life-saving duties. It is paramount with any public safety operation that a wireless mesh is fast in transmitting real-time data and completely secure from any cybersecurity threat. In life-threatening situations that fire personnel may face, communications need to be received without the risk of interference or latency. Rajant BreadCrumbs can be configured with multiple radio transceivers and radio frequencies, including 900 MHz, 2.4 GHz, 4.9 GHz, and 5 GHz with low-power consumption. Multi-frequency capabilities help avoid interruption, increase speed, and allow an array of applications to run simultaneously. Ensuring comprehensive connectivity when fighting the California wildfire In October 2019, the heat from the sun combined with winds gusting through the foothills of El Capitán Canyon in California sparked a bush fire in the desert. During the blaze, the climate in the Canyon was considered “critical fire weather” with its dry grass and wind gusts of up to 40 miles per hour. Emergency services and crews from the Santa Barbara County Fire Department, California Fire, the U.S Forest Service, and other agencies were immediately dispatched to contain the blaze before it spread. Rajant and its technology partner Dejero were enrolled after a planned public safety demonstration locally. Both companies quickly shifted to an urgent, real-life challenge. Following this, Rajant’s BreadCrumbs and camera systems were mounted to bulldozers enabling critical local data transmission, while other situational data and mapping could be revived in the field. From a tactical response truck, Dejero was able to bridge from the field to the command post over cellular and SAT networks, during the actual emergency situation. Significantly, this allowed the firefighters manning the bulldozers to communicate in the valley, which normally is not possible. Data was then sent from the bulldozers, straight to the truck, and transmitted via the Internet connection, whereby the command control center could receive the video feed in real-time. With Rajant and Dejero providing the connectivity needed, the operation was a success. While four hundred and twenty acres of land had burned, no structures were damaged, and, most importantly, no one was injured. By utilizing a Kinetic Mesh network, fire personnel ensure the safety of their teams. Whether they’re fighting a blaze in a house, a high-rise building, or in a vehicle, a fully mobile, rapidly deployable, and redundant wireless connection allows firefighters to fully focus on saving lives.

vfd