Download PDF version

It is the legal duty of the responsible person in any building to make the evacuation of disabled people equal to that for able-bodied people, as Anthony Smith, Managing Director of Vox Ignis, explains. When the Disability Discrimination Act (DDA) was first introduced in 1995, it gave disabled people long overdue access to goods and services, education, employment, transport and accommodation. This was, subsequently, incorporated into the Equality Act in 2010.

Evacuation of mobility impaired people

Sadly, despite its many benefits in access to goods and services, one area the act failed to address was the evacuation of mobility impaired people, in the event of an incident, leading to the Government and Disability Rights Commission to publish a guide of supplementary information for the fire risk assessment for Disabled People in 2007.

The guide highlighted that the Fire and Rescue Service’s role in fire evacuation is that of ensuring that the means of escape, in case of fire and associated fire safety measures provided for all people, who may be in a building, are both adequate and reasonable, taking into account the circumstances of each particular case.

Fire risk assessment of buildings

It is the responsibility of the person(s) having the responsibility for the building, to provide a fire safety risk assessment

Under current fire safety legislation, it is the responsibility of the person(s) having the responsibility for the building, to provide a fire safety risk assessment that includes an emergency evacuation plan for all people likely to be in the premises, including disabled people and how that plan will be implemented.

As a member of BSI FSH/12/5, which covers Voice Alarm and Emergency Voice Communication Systems, and as Managing Director of Vox Ignis, a manufacturer of disabled refuge and fire telephone systems, Anthony Smith has long lobbied for the amending of BS9991 and Building regulations approved document B1, to make it compulsory for dwellings above one floor to have disabled refuge areas, with an Emergency Voice Communications System (EVCS), as commercial buildings, ensuring residents can communicate with building management, in the event of an incident, such as fire.

As a member of BSI FSH/12/5, Anthony Smith has long lobbied for the amending of BS9991

Clear and secure communications vital in emergencies

In such emergencies, it is vital that communication is clear, secure, monitored and maintained. These systems can be the difference between life and death.

In the wake of the Grenfell disaster, many in the industry, including Anthony Smith, believed it would only be a matter of time until such critical amends were made. However, four years on, it looks as though the industry, fire services and general public may finally be seeing their persistent rallying result in action, transforming this outdated mandate.

Importance of refuge areas in buildings

Lifts, escalators and platform lifts may have transformed the way that people with mobility issues access buildings

While responsible building owners and there are some out there, are already establishing refuge areas in dwelling houses, the revision of BS9991 in the next year, could finally spell the end of such crucial health and safety measures being optional, and make it a requirement for residential buildings, but it will take a change to the Building Regulations Approved Document B1 to change the law.

Lifts, escalators and platform lifts may have transformed the way that people with mobility issues access buildings. However, more often than not, they are completely redundant in an emergency, which is why refuge areas hold the key to ensuring the safe and orderly evacuation of people from buildings, in the event of a crisis.

Key role in promoting disabled refuge areas

Here at Vox Ignis, we’ve witnessed this first hand. Working with property developers across the globe, we’ve helped establish disabled refuge areas, in a wide range of developments, from skyscrapers to hotels and high-rise residential towers, and are starting to be involved in projects in this country with residential towers, notably in Croydon.

Although, in both of those instances, the client wasn’t bound by law to include EVCS for the disabled refuge areas in their developments, it goes to show that many forward-thinking and responsible developers are already embracing the latest in evacuation and fire safety technology, however, as an industry and as a nation, we can ill afford to rest on our laurels.

Of the 72 people who died in the tragic Grenfell fire disaster, more than half of the casualties were adults with limited mobility or children, according to evidence shared in the latest phase of the inquiry, and we can only hope that, if the proposed revisions to BS9991 are approved, and Approved Document B1 is amended, we can finally put the relevant measures in place, in order to make high-rise residential buildings safer for all, once and for all.

Download PDF version Download PDF version

Author profile

In case you missed it

How Does Thermal Imaging Serve The Needs Of Firefighters?
How Does Thermal Imaging Serve The Needs Of Firefighters?

Thermal imaging is an advantageous tool for firefighters on the frontline. As thermal cameras have become more compact and affordable, their availability has expanded, along with their usefulness. We asked our Expert Panel Roundtable: How does thermal imaging serve the needs of firefighters and how is it changing?  

Why Should I Consider Fire Water Runoff?
Why Should I Consider Fire Water Runoff?

Fires have devastating consequences, not just posing a threat to property, but also to human life. Fires can also have detrimental impacts on the environment, with one of the largest associated environmental issues being water runoff occurring from tackling the fire. What is Fire Water Runoff? - Water is widely used to extinguish fire, thanks to its accessibility and effectiveness. Typically, water isn’t hazardous and doesn’t pose any threats, however, it can easily become contaminated by any materials stored onsite, or combustion by-products. Some water will evaporate with the fire, some will infiltrate into the ground, and any excess will runoff. Managing fire water runoff What are the Risks? - Fire water runoff can contain chemicals which are toxic to soils, drinking water, and aquatic life in surface water. Runoff can enter the environment through various pathways, including absorption into the ground, draining into both surface and foul drains, or runoff into bodies of water. The resulting pollution can cause detrimental environmental harm particularly if groundwater becomes contaminated, and even pose a threat to public health. Fire water can carry contaminants a long distance, expanding the impacted area Fire water can carry contaminants a long distance, expanding the impacted area. Alongside the environmental impacts, the ‘polluter pays’ principle underpins most of the regulation of pollution affecting land, water and air quality. If you do not manage fire water runoff, you could be prosecuted and be liable for the clean-up costs. Flood risk assessment How to Identify Risk? - It is important to carry out a thorough risk assessment. If you are yet to move into a property a thorough flood risk assessment is recommended, however, all businesses should consider their fire water regardless of how long they have been at a site. Enlisting a specialist will make the process much easier, and ensure it is carried out accurately, efficiently, and in-line with best practice and guidance. It’s important this step is undertaken before there could be any potential risk from fire to ensure a thorough plan and procedure is in place. The risk assessment should consider areas such as the site topography, drainage connectivity, materials and substances stored on site, along with the current storage arrangements. There should also be consideration given to how much water is likely to be required to extinguish a fire. Robust emergency plans Having the necessary policies and procedures in place will undoubtedly reduce the potential impact As part of the risk assessment, a drainage plan should be created and recorded, which will also be useful for site maintenance. Ideally, all relevant information should be stored within accessible BIM (Building Information Modeling) software. Having the necessary policies and procedures in place will undoubtedly reduce the potential impact. All businesses should have robust emergency plans, with higher risk businesses such as COMAH (Control of Major Accident Hazards) sites legally required to have more comprehensive and detailed plans. Many commercial and industrial sites store potentially hazardous chemicals or materials, which would be highly polluting should they enter a watercourse with fire water. The subsequent runoff can lead to a major accident to the environment. Preventing fire water To prevent fire water from causing pollution, it can be contained, reducing the risk of contamination occurring. There are various methods for containment which may include: Drainage shut off valves. Bunds. Containment lagoons or underground storage tanks. More simple methods can include aspects such as drainage covers or spill kits. An experienced and qualified professional will be able to help you prepare for managing your fire water. Environmental protection is of paramount importance, and by assessing and managing the associated risks, natural resources and ecosystems can be safeguarded. Notwithstanding a company’s regulatory obligations, and noting that in the vast majority of instances the ‘polluter pays’, the expectations of Corporate Social Responsibility alone make it good practice to demonstrate exemplary environmental compliance. Our team at FPS Environmental can help you by creating a fire water management plan which will identify ways to support water pollution prevention.

Teledyne’s Handheld Laser Detects Explosive Methane From 100 Feet Away
Teledyne’s Handheld Laser Detects Explosive Methane From 100 Feet Away

A new handheld device can detect the presence of explosive methane gas from up to 100 feet away. For firefighters, the tool provides situational awareness, saves time, and ensures safety from a distance. Knowing the presence of methane gas enables a firefighter to deal with an emergency gas leak and to avoid a deadly explosion. Gas laser The Gas Laser from Teledyne Gas and Flame Detection can shoot a laser beam through a window, a gap in a door, or another common venting point to provide an instant reading of the amount of methane in an area up to 100 feet away. The laser is invisible, but a green-spot pointer guides the aim as a user “points and shoots.” The laser bounces off any reflective object and then analyses the parts per million (ppm) of methane gas per meter of distance along the path of the laser. It measures down to a threshold of 1.25 ppm/meter. The handheld device can also capture a video image and a GPS location in addition to the gas reading stored on the device. It can be connected via WiFi and/or Bluetooth to a smartphone or other device and has onboard data logging. The device is automatically calibrated and tested when it is returned to its case. Detects minute quantities of methane Gas laser detects a much smaller amount of methane than would be explosive, thus preventing explosions  “It’s a brand new device, and everybody wants it,” says Alan Skinner, Regional Manager, Portable Gas Detection for Teledyne Gas and Flame Detection. “Once they understand what it does, they want it. Now you don’t have to be inside a hazard to detect the hazard.” The Gas Laser detects a much smaller amount of methane than would be explosive, thus preventing explosions by addressing leaks early.  The lower explosive limit (LEL) for methane is 5 percent, the equivalent of 50,000 ppm, much higher than the measurement threshold of the Gas Laser. Previously, there was no entirely safe method of evaluating the gas concentration without being near an area, typically using a three-foot probe sensor, for example.  “Now they know what they are getting into before they enter,” says Skinner. “It saves a huge amount of time.” Understanding working of gas laser Getting the word out about the device has been a challenge given the continuing coronavirus pandemic and disruptions of the hurricane season. “It’s one of those products you have to show them and let them play with it to understand what it does,” says Skinner. Interest was high at the recent FDIC show, where Teledyne unveiled the new sensor alongside its broader range of gas detection sensors. Teledyne’s range of portable sensors traces its roots back to GM Instruments (GMI), founded in Scotland in 1947. The sensor company was involved in multiple mergers and acquisitions in recent years, including ownership by companies such as Battery Ventures, Tyco, Scott Instruments, Johnson Controls, and 3M. Two years ago, the product line was acquired by Teledyne and represents the portables segment of their Environmental Monitoring Division, which also includes Detcon, Simtronics, and Oldham. Protege ZM and PS200 sensor PS200 sensor measures levels of four gases – methane, oxygen, carbon monoxide, and hydrogen sulfide Another sensor among Teledyne’s range of handheld devices is the Protégé ZM, a carbon monoxide sensor that a fireman can clip to their helmet, pocket, or bag. The “disposable” device has a 24-month lifespan, requires zero maintenance, and provides a calibration and bump test. The PS200 sensor measures levels of four gases – methane, oxygen, carbon monoxide, and hydrogen sulfide. An internal pump extracts a sample before a firefighter enters a confined space. A charge, bump, and calibration station (ABC Station) ensures calibration on a weekly, monthly, or twice-yearly basis. PS500 and GT Fire sensor The PS500 model adds another sensor to the four – typically either a photoionization detector (PID) for volatile organic compounds such as benzene, or a hydrogen cyanide (HCN) sensor to measure the presence of carcinogenic compounds that can be a byproduct of burning vinyl or plastics. The PID sensor can help investigators detect propellants that might indicate arson. The GT Fire sensor detects explosive gases in the PPM/LEL ranges with optional CO, H2S, and O2 sensors. The device can sniff out small gas leaks before any LEL level is reached. Able to find leaks in the PPM range, the device can pinpoint exactly where gas is leaking.

vfd