The risks associated with fire in the petrochemical industry, whether it be on production platforms at sea or on shore at oil terminals and storage facilities, have been brought into sharp focus by a number of high profile incidents, resulting in tremendous damage to infrastructure and sadly, in some extreme cases, the large-scale loss of life.

This has caused the industry to look at new approaches such as Video Smoke Detection (VSD) to protect key elements of their infrastructure and to ensure the safety of workers by providing early fire detection.

Back in 1988, the devastation wrought by the world's worst offshore oil disaster on the Piper Alpha platform in the North Sea was a major shock and wake-up call to the sector. In this case, a gas leak resulted in blasts on the rig and sparked a major fire, which engulfed the structure - then the largest platform in the North Sea - leading to 167 fatalities. The world's worst offshore oil disaster on the Piper Alpha platform in the North Sea was a major shock and wake-up call 

This traumatic event demonstrated all too clearly the hazardous nature of the oil and gas environment, and the serious repercussions that occur when problems are not detected early enough and a fire is allowed to take hold.

Hazardous Oil And Gas Environments

More recently - in December 2005 - we were again reminded of the ever-present danger, this time manifested in the biggest blaze seen in the UK since World War II, at Hertfordshire Oil Storage Terminal in Buncefield, near Hemel Hempstead. Prior to the fire, the terminal was handling 2.37 million metric tonnes of oil products annually. The problem at Buncefield resulted from the overflowing of unleaded petrol being pumped into a storage tank.

A rich fuel and air vapour rapidly formed and spread across the site and set off a number of major explosions - heard for miles around - and an associated fire. This unprecedented incident took in 20 storage tanks and caused extensive damage to the site and adjacent business premises, and the evacuation of a significant area around the facility.

So what measures can be taken to help minimise the fire hazards in this sort of environment and provide an early warning of fire, to protect key assets against the potential of a problem escalating into a full scale disaster, if left unchecked?

A rich fuel and air vapour rapidly formed and spread across the site and set off a number of major explosions - heard for miles around - and an associated fire
The risks associated with fire in the petrochemical industry have been brought into sharp focus by a number of high profile incidents

A technology based on the intelligent analysis of video surveillance images is being increasingly deployed to protect such valuable assets from fire. This solution is aptly referred to as Video Smoke Detection (VSD) - a technology pioneered by D-Tec - and is a capability that is now operational in a wide range of sites worldwide.

Typical projects, across the petrochemicals industry, include for example using video smoke detection to protect the generator rooms on North Sea rigs. These assets are essential to the smooth and ongoing operation of the multi-million pound platforms and are particularly challenging installations, as they are prone to heavy vibration and atmospheric contamination. Another application is the monitoring of a huge on-shore oil terminal connected to oil-fields.

Benefits Of Video Smoke Detection

Typical projects, across the petrochemicals industry, include using video smoke detection to protect the generator rooms on North Sea rigs The beauty of VSD is that it takes detection to the fire rather than waiting for the fire to come to the detector. This approach is ideally suited to the large, extensive nature of oil terminals and platforms where it is just not practical to cost-effectively place conventional detectors close enough to the area of risk to provide the required level of fire detection.

In extensive structures or sites covering a large geographic area, there is a high reliance - as far as traditional fire detection solutions are concerned - of smoke overcoming distance before being detected.

This can mean that with conventional detectors, it can be many minutes before a fire alarm is activated - if at all - making it much more problematic to tackle a blaze, as it is likely to have reached a more advanced stage. Given the speed that fires can grow in such a combustible environment, early smoke detection is even more critical for the oil and gas industry.

Thankfully, distance is not a limitation faced by Video Smoke Detection (VSD), as this technology is able to utilize images from standard video surveillance cameras and analyze these, by applying sophisticated algorithms to detect smoke. By programming the software to look for anticipated motion patterns of smoke over a specified area within the range of a camera image, and looking for pixel changes, VSD has the potential to deliver an exceptionally fast response - typically in seconds.

Crucially, once smoke has been detected, the system can alert the operator as well as deliver a visual representation of the smoke on the system's monitor. Consequently, VSD is not reliant on the proximity of smoke to a detector; whether the camera is 10 or 100 metres away from a risk area, VSD will detect smoke in the same amount of time.

Although it is claimed that other camera-based systems are able to detect smoke, the reality is that these are really motion detectors or obscuration-change detectors which are unable to differentiate between smoke and other sources of movement and hence are prone to false smoke alarms.

In terms of practicality, the cameras associated with VSD can be fixed in conveniently accessible places, rather than being positioned well out of reach, as is the case with conventional detectors. Additionally, as video surveillance can cover a much larger area, fewer cameras would be required, compared to smoke detectors, for a given size of oil platform. It may also be possible to take advantage of already installed security cameras for some of the monitoring.

Given the speed that fires can grow in such a combustible environment, early smoke detection is even more critical for the oil and gas industry.
VSD has the potential to deliver an exceptionally fast response by tracking smoke motion patterns

IP Enhances Visual Smoke Detection Capabilities

VSD's capabilities have been further enhanced by the potential for camera images and alarms to be distributed, for review, over a network to a number of viewing locations. This is being realized through solutions that readily integrate the well-recognized advantages of VSD with IP (Internet Protocol) based functionality.

In practice, this advance means that, for ease of management, it is perfectly possible for a number of geographically dispersed oil rigs to be monitored from the same control room, and more to be added should the need arise. This can also be invaluable for unmanned platforms where, should an alarm be activated; the remote operator actually has a visual indication of what is going on. It is perfectly possible for a number of geographically dispersed oil rigs to be monitored from the same control room

As a consequence, an operator can make an informed decision there and then as to whether a firefighting team needs to be sent to the platform. This is in contrast to more conventional smoke alarm systems, which just sound an alarm without the possibility of ascertaining the severity of an incident without automatically paying a visit - a costly process.

There is also the ability, with this flexible approach to VSD, for changes to configuration, testing and diagnosis to be carried out remotely - reducing cost and minimizing delay.

Integrating Smoke And Flame Detection

Another big leap forward with VSD is the potential, for the first time, to combine smoke and flame detection. This is ideal for more hazardous situations, such as those thrown up by the petrochemical industry.

A key benefit of the application of an advanced flame detection algorithm - in addition to smoke detection - is that it is now perfectly possible to deliver a layered response, typically alarming on smoke first and then confirming again if fire appears. There is also the potential for the application of this capability in designated areas at night where flame rather than smoke is likely to be the most visible sign of an incident.

Fast Track Detection For Effective Fire Protection

The message to fire and safety professionals concerned with the petrochemical industry is this: Now is the right time to look again at Video Smoke Detection (VSD) for key projects, whether it be an oil refinery on land or a production platform at sea.

Ultimately, the effectiveness and ease of installation of VSD, particularly in the shape of the networkable and dual smoke and flame detection capabilities, makes a compelling case for adopting this technology, where conventional approaches are simply not going to provide the early warning necessary to minimise the very real risks associated with fire.

 

Download PDF version

Author profile

In case you missed it

Retention Of Volunteer And Career Firefighters: Be More Like Google
Retention Of Volunteer And Career Firefighters: Be More Like Google

In order to recruit and retain, you must change your mindset to that of a business. While we continue to scratch our heads on how to recruit and retain members among the ranks of our departments, we might want to take a look at ourselves. Sometimes looking in the mirror is a hard thing to do, as it may give us a clear view of who and what we are as an organization. For years, the volunteer fire service has had to overcome many obstacles such as funding, a not-so-friendly environment or poor leadership, to name a few. They may even have had to re-create themselves. Business Mindset And Reputation Whether you are in a rural, suburban or urban area, what drives us? Is it pride? Is it fulfilling a need to belong? Ultimately, it is the end user, the customer – the resident, the taxpayer. In order to target new membership, we must be able to sell ourselves as a good, a service and a product. Business models have been around for years and, if followed, yield positive results We need to begin to think about running our volunteer organization like a business in order to be successful. Businesses that are successful have a great reputation. People want to work for them and they easily retain and recruit top talent. Business models have been around for years and, if followed, yield positive results. Building Community Of Employees Let’s take Google for an example, a company with more than 64,000 employees with growth to the tune of billions of dollars each year. When looking at Google’s performance, it raises the question: what is Google’s success secret? How can a company amass $9.7 billion in revenues mostly from advertising? How can they keep great help and recruit? The answer is its leadership being innovative, actively advertising, creating a unique and rewarding work environment as well as creating and executing their business model daily. A business that goes above and beyond by treating their employees great will in return get motivated and loyal employees. Google allows their employees flexibility to work on passion projects and tap into their creativity. Google also encourages its employees to become teachers and coach one another to help build a more creative, satisfied and intimate community of employees. One needs to make fire departments attractive to potential recruits, there are small moments of observation that are then used to make bigger decisions are called “thin slices” Positive First Impressions In this day and age, we need to be ahead of the curve. People want to be informed and they want it now. They want a quality product and will shop around until they find it. They also want to be part of something big. They want to be recognized. Remember the statement, “You never get a second chance to make a first impression”? Well, it was the tagline for a Head & Shoulders shampoo ad campaign in the 1980s. Are we continuing to make our fire department attractive to potential recruits? How do we expect to garner new membership if we don’t make that “first impression” a positive one? These small moments of observation that are then used to make bigger decisions are called “thin slices.” Potential candidates for membership are constantly assessing us, slice by slice, as “recruiters". Business Model For Your Demographic We need to create a business model and execute it at all times Is the fire station in good shape? Is it clean and orderly? Is the organization structured? Is the leadership strong and decisive? Or are there cliques and groups that work against the common goal or the command? These are easily seen and quickly discovered by potential candidates. They are looking to see what we are offering them: why should I risk my life, my health, my safety – what’s in it for me? How do we take all of these “thin slices,” package them together and make them attractive for potential recruits? We need to create a business model and execute it at all times. In order to sell, we need to advertise. In order to advertise, we need the leaders of our departments, the innovators and recruiters, to all come together and develop a business plan that works. It should work for your demographic. It should pour information to the masses. It should build on a reputation that you are a place that you’d want to work for! We need to begin to think about running our volunteer organization like a business in order to be successful Utilizing Current Volunteer Membership We need to begin to think about running our volunteer organization like a business in order to be successful. So, what does this mean for “my fire department”? Simply put, it means that you need to rely on the staff you have in place; lean on them and their expertise. Your current membership may hold the keys to your success. Develop a mission statement that is creative and energetic Canvass your current membership for professionals who could be utilized. You may have trained CPAs, human resource professionals, CEOs of corporations, advertising and marketing experts or veterans already inside your organization. They may remain quiet as they are unsure that they are needed to assist. Ask for the help and utilize them! Learning From Shortcomings Do not hesitate to implement them into your business plans. Help them look at how to target demographics in your area. Remember that great leadership will work to identify an individual’s strongest points and work to utilize them for maximum effectiveness. When you create a plan, be sure that you set obtainable goals. Develop a mission statement that is creative and energetic. Don’t eat the elephant in one bite: set a timeline in your plan. Meet often with your team, as you will learn more from your shortcomings than from your successes.

In Search Of Best Practices As Grenfell Tower’s Impact Reverberates
In Search Of Best Practices As Grenfell Tower’s Impact Reverberates

From a dozen or more perspectives, the tragic fire at London’s Grenfell Tower was a wakeup call. The shear scope of the tragedy – 72 deaths, 70 injuries in the worst United Kingdom residential fire since World War II – is a stark reminder of the importance of fire prevention, and the catastrophic consequences of its failure. There are additional lessons to be learned from the fire service response to the blaze, which burned for 60 hours and involved 250 London Fire Brigade firefighters and 70 fire engines from stations across London. A stark reminder of the importance of fire prevention, and the catastrophic consequences of its failure In short, the Grenfell fire is the kind of colossal event that shakes aside any complacency that stems from a decades-long trend of decreasing deaths from fire. It takes a tragedy of such monumental proportions to get the full attention of government, regulators, fire professionals, and the general public. In the aftermath of the tragedy, the challenge is to focus that attention in ways that can have a real impact on preventing future tragedies.   Building Regulations And Designs  A torrent of questions and second-guessing have emerged from the Grenfell experience. How should building regulations change, including the use of aluminum composite material panels that contributed to the rapid spread of the fire? What about building designs? Grenfell Tower had one central stairwell and one exit. Are more sprinkler systems needed in residential buildings, and what obstacles must be overcome to make it happen? Related to the response to the fire, how did officials who advised residents to “stay put” for two hours as the fire was spreading contribute to the death toll? How should practices change, given that “stay put” is often the advice to residents in a high-rise building fire likely to be easily contained? Every action taken in response to the fire is being scrutinised. Will useful new best practices emerge? Are more sprinkler systems needed in residential buildings, and what obstacles must be overcome to make it happen? Sufficiency of firefighting equipment is another concern. In the Grenfell fire, how was the firefighting effort impacted when a tall ladder did not arrive for more than 30 minutes? What was the role of low water pressure? Were there problems with radio communication?   The Grenfell Tower Inquiry, ordered by Prime Minister Theresa May on the day after the fire, is examining every detail. The inquiry’s chairman has promised that “no stone will be left unturned.” Meanwhile, it behooves all of us to ponder what lessons we can learn from the tragedy, and to ask how we can apply those lessons to prevent future tragedies.

Integrated Life Safety: How Smart Buildings Offer Effective Fire Detection
Integrated Life Safety: How Smart Buildings Offer Effective Fire Detection

The era of “smart buildings” is here, bringing new opportunities for significant gains in efficiency, safety and environmental protection. In an interview, Rodger Reiswig, director of industry relations at Johnson Controls Global Fire Protection Products, offers his insights into the impact of smart buildings on fire detection and what it means for organisations planning new facilities. Q: How do you define smart buildings? The term “smart buildings” means different things to different people. For some, it’s all about the Green Initiative. Is the building able to sustain itself or reduce its carbon footprint? Can they reuse some of their water or generate electricity from onsite solar cells or wind turbines? Another definition of “smart buildings” is based on sensors. Is the building smart enough to know that, if I’m the first person there in the morning and I swipe my card, it should switch the HVAC system into occupied mode? Can it start to turn the lights on? Can it adjust the window shades to allow the sun to come in? Can it call the elevator down for me because it knows that I’m in the lobby and I’m going to the tenth floor? It’s all about how the systems integrate with one another, not just providing information to each other, but also interacting with one another, causing things to happen from one system to another. Q: How close are we to the vision of an integrated intelligent building where all the systems work together? We’ve already been doing some integration for a few years now with things like HVAC and lighting. Now we’re seeing tighter integration where, for example, we can use the position of the sun to get the best impact of sunlight to start to heat the building in the winter. One of the biggest challenges that we see in the smart building environment is protocols or topologies for how one system talks to another. The fire alarm system uses a certain protocol or language. The HVAC system uses another protocol or language, and so on. Creating an environment where systems can talk to one another and not just send, but also receive information – that’s the difficult part. Everybody can send information out. It’s easy for me to tell you what is happening in a system. But for you to tell me what’s happening in your system and then expect me to do something with that information, that’s when it gets a little bit harder. Q: What makes system-to-system communication challenging? Because of the critical role they play in protecting lives and property, life safety systems require a level of reliability and resilience far beyond that of other building systems or networks. Therefore, we have to be extremely careful about how we allow information from other systems to come into the life safety system, in case that information should affect the performance of the system. In addition, the design and specification of life safety systems is guided via three different means: building codes, standards and listings. Each of those means is controlled by different organisations. Any proposed changes to life safety networks have to pass muster with those entities, and that takes time, effort and consensus-building. When we’re talking specifically about system-to-system communication, the listing entities, organisations like UL and FM Global, regulate how much information can come into any life safety system. The listing documents require that there be some type of a barrier or gateway to prevent unauthorised or corrupted information from coming into a fire alarm system, causing harm or causing it to lock up. Life safety systems require a level of reliability and resilience far beyond that of other building systems or networks We will see all building technologies become more integrated over time as we work through the different entities and people begin to realise the benefits of improved safety, lower environmental impact, and reduced costs. Q: How will fire detection systems benefit from other sensor information available in a building? One of the things being explored is occupancy sensors that tell where people are located in a building. Some type of telemetry could be used to understand where people are concentrated in a facility and, based on that, make the fire alarm system more or less sensitive to smoke. If a lot of people are congregating in one area, there might be more activity and more dust being stirred up. You could use that information to set different alarm parameters compared to, for example, an empty building with no significant air movement. We see that type of operation happening. Knowing how many people are in a building and where they are located is also a critically valuable piece of information for first responders. Here’s another example: let’s say we have a big parking garage next to a mall. Cars come in, and perhaps some people leave their cars running, or the cars aren’t operating as efficiently as they should be. You could have carbon monoxide detectors and occupancy sensors in the garage, and when the garage becomes crowded and carbon monoxide levels start to rise a bit, you could tell the fire alarm system not to go into alarm, but instead to turn fans on to get some fresh air moving throughout the building. It’s performing a life safety function, but at a non-emergency level. Q: Are you involved in any cross-industry standard-setting organisations to enable better communication among building systems? On an industry level, Johnson Controls is very active in the development of codes and standards. We have people who sit on committees for things like healthcare occupancy standards. We have engineers that contribute to product listing documents. We have people who participate in committees that determine how products should be installed and maintained.Fire alarm systems could be used to detect and solve non-emergencies before they become threats We’re even involved with groups, like the National Disabilities Rights Network, that advocate for laws that promote equal access and notification of life safety events. The list goes on. It’s a common protocol that allows all types of systems to get on the same communication platform and be able to send and possibly receive information, depending on the product and the type of system it is.Just to give you an example, there’s a standard called BACnet, Building Automation Control Network, which was developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers. BACnet is based on entities, so within their system, they need to define what each entity is. What is a thermostat? What is a variable air box? What is a lighting controller? What is a fire alarm smoke detector? We work closely with this organisation to create entities that can reside on their infrastructure so that, for example, the lightning system recognises what a smoke detector is when they send that entity out to the network. It’s one of the most important methods we are using to communicate among dissimilar systems. Integrated systems mean elevators could be used to evacuate people in an emergency We’re working on two fronts: internally and industry-wide. We’re developing third-party interfaces that enable an outside entity to sign a non-disclosure form and get the keys to the kingdom, if you will, on our protocols for how our systems operate – the data stream that we can send out and receive back – allowing that third-party developer to create some of these interfaces themselves. That has been one of our challenges, because we have always said that this is a fire alarm system, and if you want that type of an interface, we need to write it and get it listed. We had to step back and say, what if we developed a barrier gateway and allowed somebody else to develop the protocol and, done properly, became able to receive and send information to the fire alarm system? It’s like what Apple does with apps. We are going down that road with this third-party interface gateway. Q: Have these developments changed how you’re planning for the future development of fire detection systems? Yes, they have. We are looking at how we can use these systems strategically to make life safety systems better. And life safety is becoming more nuanced, proactive and comprehensive. Can I communicate and use this information to unlock the door so people have a clear egress? Can I start to use the elevators to evacuate people during an emergency? We’ve been told traditionally to use the stairwell and not the elevator in the event of a fire. But it takes a person about a minute a floor to get out. That’s a problem if you’re in an 80-story building. You have elevators sitting there. Is there something we could do to allow these elevators to be used to evacuate people? The American Society of Mechanical Engineers has been working hard on developing the language and requirements to do that. It’s just one example of how having systems integrated and talking to each other allows us to create smarter solutions that can help make facilities safer. Q: What advice would you give to building owners, architects, designers or contractors to help them start planning today for the future of smart buildings? The most important thing is to build awareness. The average building owner doesn’t know that a lot of this technology even exists. We need to inform them that there are options they can ask about. One of my recommendations would be to ask your design engineer. As you discuss the kind of windows you want, the kind of flooring and lighting and so on, ask how these systems could integrate together and what the benefits of integration would be. The bigger your facility, the greater the benefits of integrating these systems. Another resource that people don’t use often enough is the AHJs, the authorities having jurisdiction. That’s the local fire marshal, the fire chief, the local first responders. Don’t be afraid to sit down with a fire marshal, tell them what kind of building you’re putting in, and ask them what would help them respond in the event of an emergency in that building. They’ll be glad you asked, because these people see a lot of different buildings and respond to emergencies every day.

vfd