Download PDF version

Communication technology has always been a key area of innovation for a variety of sectors, but the emergency services sector, in particular, is one of those that stands to gain a great deal. Those operating in the fire sector typically operate in noisy, dangerous conditions where communication is essential but difficult.

hands-free communication 

From Bluetooth headsets to clunky hands-on radio systems, there have been a plethora of communication innovations in recent years designed to connect workers while keeping them safe and productive.

Wearable, hands-free communication systems represent the latest frontier in this quest for safe communication

Wearable, hands-free communication systems represent the latest frontier in this quest for safe, productive communication, and the pandemic has changed the communication game business of all shapes and sizes will be looking at ‘hands-free’ communication technology in a brand new light. 

Since the onset of the pandemic, even the most hands-on workplaces have had to practice social distancing and mask-wearing, adding another layer of health and safety onto an already complex set of rules and regulations. Where workers might once have been able to share radios and other equipment, they now need to do what they can to stay apart and not cross-contaminate surfaces. That means working hard to limit contact with surfaces, and each other. 

Critical communication in the fire sector

If any sector is ready to lead the charge in terms of communication innovation, it’s the fire sector, which typically sees its workers operating in loud, hazardous environments, has been a driving force behind some of the greatest communication innovations of the past couple of decades and will continue to innovate to keep its workers safe and connected.

According to some sources, the critical communications industry is growing at a rate of knots and will be worth more than $20 billion by 2028. That’s a compounded annual growth rate of nearly 10%, no doubt accelerated by the pandemic and our renewed focus on worker safety and the need for hands-free communication solutions. 

Perhaps the best way to speculate about future breakthroughs and how they will materialize is to first look back at how the emergency services, hospitals, and other sectors, have pioneered the way teams communicate.  There have been countless communication breakthroughs over the years, but which ones have stood the test of time, and which ones are going to be most valuable to us as we emerge into a post-pandemic world? 

‘smart PPE’ and wearable communication technology

Workers in a variety of settings were able to communicate completely hands-free without removing their PPE

Wearable communication technology isn’t new by any means, but its adoption and innovation have certainly been accelerated since the pandemic. While front-line and mission-critical workers carried on throughout the pandemic, they still needed to adhere to social distancing guidelines wherever possible and that also meant limiting contact with surfaces and staying in PPE.

Workplaces in other sectors, when they were able to go back to the office, also faced the same conundrum. Health and safety had changed and businesses needed to adapt accordingly. Their answer? Wearable communication technology in the form of ‘Smart PPE’. By incorporating comms technology into masks, helmets, visors, and overalls, workers in a variety of settings were able to communicate completely hands-free without removing their PPE, giving them complete freedom without compromising on safety.

No more pulling off visors to fiddle with intercoms, or reaching for the bulky radio that’s been passed around from shift to shift. Smart PPE makes operating in hostile environments by giving them the ability to stay in touch with their co-workers without having to interface with anything physically or share personal devices. 

Intelligent ‘active listening’ ear protectors

Did you know that an estimated 22 million workers every year are exposed to potentially damaging levels of noise? The traditional solution would be to muffle the sound with ear guards, but that comes with its own set of problems. Communication is as much about listening as it is speaking. For workers in busy, loud, or dangerous environments, being able to hear what’s going on around you while also protecting your ears from potentially damaging sounds is crucial.

Active listening headphones can protect workers from potentially damaging noises such as heavy machinery, but let through important sounds such as warning signals, radio communications, or the voices of their co-workers. That means instead of constantly taking protective ear guards on and off, or lifting a cup of the gear to hear a colleague yell something important, active listening headphones allow workers to stay alert and in-tune with their surroundings without putting their hearing at risk.

Pioneering self-healing networks

A perfect companion to ‘smart PPE’ but also an excellent technology in its own right, self-healing networks are designed for teams that are constantly on the move, from hospital staff to busy fire teams. They’re called ‘self-healing’ because of their ability to reconnect units that come back within range, and they stay connected even when one or more units drop off the network.

Sectors like the emergency services are going to play a critical role in keeping those innovations coming

A self-healing network is a cut above Bluetooth, which is typically unreliable with limited range and requires no base unit - allowing team members to roam far and wide and stay in touch so long as they’re in range. It facilitates ‘always on’ communication, meaning no need to push buttons to talk and can be voice-activated, so no member of staff has to come into contact with another or with any surface. While not invented since the pandemic, much like Smart PPE, its uptake has increased dramatically. 

Communication breakthroughs have been central to health and safety for several years, but as we emerge into a so-called ‘new normal’ following the pandemic, sectors like the emergency services are going to play a critical role in keeping those innovations coming. 

Download PDF version Download PDF version

In case you missed it

Teledyne’s Handheld Laser Detects Explosive Methane From 100 Feet Away
Teledyne’s Handheld Laser Detects Explosive Methane From 100 Feet Away

A new handheld device can detect the presence of explosive methane gas from up to 100 feet away. For firefighters, the tool provides situational awareness, saves time, and ensures safety from a distance. Knowing the presence of methane gas enables a firefighter to deal with an emergency gas leak and to avoid a deadly explosion. Gas laser The Gas Laser from Teledyne Gas and Flame Detection can shoot a laser beam through a window, a gap in a door, or another common venting point to provide an instant reading of the amount of methane in an area up to 100 feet away. The laser is invisible, but a green-spot pointer guides the aim as a user “points and shoots.” The laser bounces off any reflective object and then analyses the parts per million (ppm) of methane gas per meter of distance along the path of the laser. It measures down to a threshold of 1.25 ppm/meter. The handheld device can also capture a video image and a GPS location in addition to the gas reading stored on the device. It can be connected via WiFi and/or Bluetooth to a smartphone or other device and has onboard data logging. The device is automatically calibrated and tested when it is returned to its case. Detects minute quantities of methane Gas laser detects a much smaller amount of methane than would be explosive, thus preventing explosions  “It’s a brand new device, and everybody wants it,” says Alan Skinner, Regional Manager, Portable Gas Detection for Teledyne Gas and Flame Detection. “Once they understand what it does, they want it. Now you don’t have to be inside a hazard to detect the hazard.” The Gas Laser detects a much smaller amount of methane than would be explosive, thus preventing explosions by addressing leaks early.  The lower explosive limit (LEL) for methane is 5 percent, the equivalent of 50,000 ppm, much higher than the measurement threshold of the Gas Laser. Previously, there was no entirely safe method of evaluating the gas concentration without being near an area, typically using a three-foot probe sensor, for example.  “Now they know what they are getting into before they enter,” says Skinner. “It saves a huge amount of time.” Understanding working of gas laser Getting the word out about the device has been a challenge given the continuing coronavirus pandemic and disruptions of the hurricane season. “It’s one of those products you have to show them and let them play with it to understand what it does,” says Skinner. Interest was high at the recent FDIC show, where Teledyne unveiled the new sensor alongside its broader range of gas detection sensors. Teledyne’s range of portable sensors traces its roots back to GM Instruments (GMI), founded in Scotland in 1947. The sensor company was involved in multiple mergers and acquisitions in recent years, including ownership by companies such as Battery Ventures, Tyco, Scott Instruments, Johnson Controls, and 3M. Two years ago, the product line was acquired by Teledyne and represents the portables segment of their Environmental Monitoring Division, which also includes Detcon, Simtronics, and Oldham. Protege ZM and PS200 sensor PS200 sensor measures levels of four gases – methane, oxygen, carbon monoxide, and hydrogen sulfide Another sensor among Teledyne’s range of handheld devices is the Protégé ZM, a carbon monoxide sensor that a fireman can clip to their helmet, pocket, or bag. The “disposable” device has a 24-month lifespan, requires zero maintenance, and provides a calibration and bump test. The PS200 sensor measures levels of four gases – methane, oxygen, carbon monoxide, and hydrogen sulfide. An internal pump extracts a sample before a firefighter enters a confined space. A charge, bump, and calibration station (ABC Station) ensures calibration on a weekly, monthly, or twice-yearly basis. PS500 and GT Fire sensor The PS500 model adds another sensor to the four – typically either a photoionization detector (PID) for volatile organic compounds such as benzene, or a hydrogen cyanide (HCN) sensor to measure the presence of carcinogenic compounds that can be a byproduct of burning vinyl or plastics. The PID sensor can help investigators detect propellants that might indicate arson. The GT Fire sensor detects explosive gases in the PPM/LEL ranges with optional CO, H2S, and O2 sensors. The device can sniff out small gas leaks before any LEL level is reached. Able to find leaks in the PPM range, the device can pinpoint exactly where gas is leaking.

Revising The Rules Of Evacuation
Revising The Rules Of Evacuation

It is the legal duty of the responsible person in any building to make the evacuation of disabled people equal to that for able-bodied people, as Anthony Smith, Managing Director of Vox Ignis, explains. When the Disability Discrimination Act (DDA) was first introduced in 1995, it gave disabled people long overdue access to goods and services, education, employment, transport and accommodation. This was, subsequently, incorporated into the Equality Act in 2010. Evacuation of mobility impaired people Sadly, despite its many benefits in access to goods and services, one area the act failed to address was the evacuation of mobility impaired people, in the event of an incident, leading to the Government and Disability Rights Commission to publish a guide of supplementary information for the fire risk assessment for Disabled People in 2007. The guide highlighted that the Fire and Rescue Service’s role in fire evacuation is that of ensuring that the means of escape, in case of fire and associated fire safety measures provided for all people, who may be in a building, are both adequate and reasonable, taking into account the circumstances of each particular case. Fire risk assessment of buildings It is the responsibility of the person(s) having the responsibility for the building, to provide a fire safety risk assessment Under current fire safety legislation, it is the responsibility of the person(s) having the responsibility for the building, to provide a fire safety risk assessment that includes an emergency evacuation plan for all people likely to be in the premises, including disabled people and how that plan will be implemented. As a member of BSI FSH/12/5, which covers Voice Alarm and Emergency Voice Communication Systems, and as Managing Director of Vox Ignis, a manufacturer of disabled refuge and fire telephone systems, Anthony Smith has long lobbied for the amending of BS9991 and Building regulations approved document B1, to make it compulsory for dwellings above one floor to have disabled refuge areas, with an Emergency Voice Communications System (EVCS), as commercial buildings, ensuring residents can communicate with building management, in the event of an incident, such as fire. As a member of BSI FSH/12/5, Anthony Smith has long lobbied for the amending of BS9991 Clear and secure communications vital in emergencies In such emergencies, it is vital that communication is clear, secure, monitored and maintained. These systems can be the difference between life and death. In the wake of the Grenfell disaster, many in the industry, including Anthony Smith, believed it would only be a matter of time until such critical amends were made. However, four years on, it looks as though the industry, fire services and general public may finally be seeing their persistent rallying result in action, transforming this outdated mandate. Importance of refuge areas in buildings Lifts, escalators and platform lifts may have transformed the way that people with mobility issues access buildings While responsible building owners and there are some out there, are already establishing refuge areas in dwelling houses, the revision of BS9991 in the next year, could finally spell the end of such crucial health and safety measures being optional, and make it a requirement for residential buildings, but it will take a change to the Building Regulations Approved Document B1 to change the law. Lifts, escalators and platform lifts may have transformed the way that people with mobility issues access buildings. However, more often than not, they are completely redundant in an emergency, which is why refuge areas hold the key to ensuring the safe and orderly evacuation of people from buildings, in the event of a crisis. Key role in promoting disabled refuge areas Here at Vox Ignis, we’ve witnessed this first hand. Working with property developers across the globe, we’ve helped establish disabled refuge areas, in a wide range of developments, from skyscrapers to hotels and high-rise residential towers, and are starting to be involved in projects in this country with residential towers, notably in Croydon. Although, in both of those instances, the client wasn’t bound by law to include EVCS for the disabled refuge areas in their developments, it goes to show that many forward-thinking and responsible developers are already embracing the latest in evacuation and fire safety technology, however, as an industry and as a nation, we can ill afford to rest on our laurels. Of the 72 people who died in the tragic Grenfell fire disaster, more than half of the casualties were adults with limited mobility or children, according to evidence shared in the latest phase of the inquiry, and we can only hope that, if the proposed revisions to BS9991 are approved, and Approved Document B1 is amended, we can finally put the relevant measures in place, in order to make high-rise residential buildings safer for all, once and for all.

Keeping Fire Personnel Connected And Safe Using Wireless Mesh Networks
Keeping Fire Personnel Connected And Safe Using Wireless Mesh Networks

In their daily lives, fire personnel must be brave, forward-thinking, and strategic when tackling fire emergencies. However, the most crucial part of a successful fire operation is the communication between the crew, the central command center, and the people in need of rescue when in mission-critical, and often life-threatening situations. Whether this location is a large-scale wildfire, a high-rise building or even a house, continuous connectivity can be the mitigating factor on success or failure when it comes to ushering people to safety. It was estimated by the National Fire Protection Association (NFPA) that US fire crews respond to a fire situation every 24 seconds across the nation. Still the number of fire-related fatalities has dropped significantly when compared to figures from the 1970s. Of course, this is due to the more robust communications systems and high-quality fire equipment available today, but all of this relies on stable and fail-proof connectivity. Unwavering connectivity can prevent fatalities If fire personnel are to provide an effective and real-time response to any fire safety emergency, they require constant visibility and communication at all times. Any operation interruption, faltering connection, or unreliability can cause panic, uncertainty, and even danger. Furthermore, a robust, mobile connection allows for direct correspondence to control rooms, which can facilitate additional equipment, vehicle, and team members to be deployed. An unreliable connection presents hurdles to fire personnel as it restricts access to vital information and applications, which will inevitably hold firefighter crews back from receiving real-time data that is essential in critical situations. Most importantly, new technology is emerging, aiming to minimize firefighter danger and increase the overall visibility of sites. The more powerful the applications are, the more bandwidth is required to support them. If a network has insufficient bandwidth capacity, real-time access to files, such as on-scene video, critical communications, and aerial imagery, may not be possible. In addition, on-the-move visibility is essential in providing firefighters with the inclusive situational awareness they require when dealing with a range of life-threatening incidents, whether this be sprawling wildfires, vehicle accidents, or domestic fire situations. The wireless mesh that enables critical communication Rajant Corporation has worked with many emergency personnel and equipment providers in helping them communicate reliably with its Kinetic Mesh® wireless network. Comprised of multi-frequency network nodes that solidify the connection, the network allows for complete mobility and range, enabling fire crews to communicate wherever they are without the threat of interrupted connection. It is paramount with any public safety operation that a wireless mesh is fast in transmitting real-time data and completely secure from any cybersecurity threat. In addition to providing complete mobility, the network can support innovative equipment and wearable technology that can significantly increase safety and security in mission-critical situations. An example of this is Rajant’s partnership with communications provider Vorbeck. Equipped with Rajant’s ES1 BreadCrumb® wireless radio, the wearable Vorbeck HD4 communications harness facilitates live streaming of video, voice, and data to personnel in ‘hot zones’, these being hard-to-network areas or places with no network infrastructure. As the network can work peer-to-peer with all other Rajant BreadCrumb nodes, this extends the range of connection tenfold, keeping personnel safe and protected as they undertake their life-saving duties. It is paramount with any public safety operation that a wireless mesh is fast in transmitting real-time data and completely secure from any cybersecurity threat. In life-threatening situations that fire personnel may face, communications need to be received without the risk of interference or latency. Rajant BreadCrumbs can be configured with multiple radio transceivers and radio frequencies, including 900 MHz, 2.4 GHz, 4.9 GHz, and 5 GHz with low-power consumption. Multi-frequency capabilities help avoid interruption, increase speed, and allow an array of applications to run simultaneously. Ensuring comprehensive connectivity when fighting the California wildfire In October 2019, the heat from the sun combined with winds gusting through the foothills of El Capitán Canyon in California sparked a bush fire in the desert. During the blaze, the climate in the Canyon was considered “critical fire weather” with its dry grass and wind gusts of up to 40 miles per hour. Emergency services and crews from the Santa Barbara County Fire Department, California Fire, the U.S Forest Service, and other agencies were immediately dispatched to contain the blaze before it spread. Rajant and its technology partner Dejero were enrolled after a planned public safety demonstration locally. Both companies quickly shifted to an urgent, real-life challenge. Following this, Rajant’s BreadCrumbs and camera systems were mounted to bulldozers enabling critical local data transmission, while other situational data and mapping could be revived in the field. From a tactical response truck, Dejero was able to bridge from the field to the command post over cellular and SAT networks, during the actual emergency situation. Significantly, this allowed the firefighters manning the bulldozers to communicate in the valley, which normally is not possible. Data was then sent from the bulldozers, straight to the truck, and transmitted via the Internet connection, whereby the command control center could receive the video feed in real-time. With Rajant and Dejero providing the connectivity needed, the operation was a success. While four hundred and twenty acres of land had burned, no structures were damaged, and, most importantly, no one was injured. By utilizing a Kinetic Mesh network, fire personnel ensure the safety of their teams. Whether they’re fighting a blaze in a house, a high-rise building, or in a vehicle, a fully mobile, rapidly deployable, and redundant wireless connection allows firefighters to fully focus on saving lives.

vfd