FireVu - intelligent video smoke detection from D-Tec
FireVu - intelligent video smoke detection from D-Tec

FireVu from D-Tec, the inventors and market leaders in Video Smoke Detection Buildings and environments that have historically proven to be impossible or impracticable for point, beam or aspirating smoke detection systems can now be protected, as FireVu sees through the stratification boundary to identify smoke and flame generation at the source. The uniqueness of FireVu is its ability to accurately detect smoke and flame patterns and differentiate between them and other on-screen movement patterns. Each FireVu system can simultaneously identify smoke from each of its cameras using up to 16 separate detection zones per CCTV camera. Early identification via a remote monitor allows the appropriate action to be taken in the shortest possible time. Features: Solution for complex environments Early at source detection Visual confirmation of any alarm Remote modification of sensitivity parameters Identifies both smoke and flame Unaffected by smoke / heat stratification, airflows or dilution Operates from existing CCTV cameras providing dual usage Transient rejection technology Multiple zone / camera confirmation capability Meets BS 5839 part 1 requirements; EN 50130-4 certified Remote maintenance fault diagnostics 4 alarm output N/O contacts Integration with existing fire control panel Alarm and fault indication on front panel Allows for smoke detection in hazardous / toxic environments Reconfigurable zones can be easily modified to accommodate changes in use Bandwidth limitation avoids network congestion Environmental compensation algorithms Evidential quality event recording Incorporating AD Group's ‘NetVu Connected' technology architecture, FireVu provides for seamless connection and communication with AD Group companies' CCTV-based solutions.

Add to Compare

Browse FIRE DETECTORS

Detectors - Expert Commentary

2020 Sees Increase In Popularity For Temporary Detection Systems
2020 Sees Increase In Popularity For Temporary Detection Systems

2020 introduced a variety of unique challenges for many industries around the world. Not surprisingly, the fire detection industry was not immune to all of those challenges. However, as much of the global community defined our manufacturing and installing peers as “essential” or “critical” it required us, as an industry, to adapt so we could continue to service our customers with our products and services. Many regions around the world are experiencing significant demand for temporary detection systems. This demand is almost universally driven by an increase in education, awareness, and enforcement. While this is a global shift, our company has experienced a large demand in our own backyard. Within the United States, this is being driven by the adoption and enforcement of NFPA 241. NFPA is the Standard for Safeguarding Construction, Alteration, and Demolition Operations. NFPA 241 has been a “concept” since 1930 and the official text was finally adopted by the NFPA in 1933. As with all standards, it has progressed over the years to accommodate changes in technology as well as safety awareness. Fire safety awareness While general safety awareness on construction sites has always been consistently high, fire safety awareness has significantly increased within the last 5 years. Nuisance alarms negatively consume first responder bandwidth Typically, new, or increased regulation within our industry occurs after a single devastating event or several significant events. In this particular case, it was a combination of both. On a national level, fires on construction sites were reaching dangerous and unacceptable levels and becoming so widespread that enforcement of this standard became a priority in several states. Need for accurate and timely fire detection According to a report released by Richard Campbell of the NFPA in February of 2020 titled Fire In Structures under Construction or Renovation, “the estimated number of fires in structures under construction has increased since 2014 after declining between 2008 and 2010” further creating awareness. For the last few years, the focus of many local AHJ’s (authority having jurisdiction) was on new and active worksites or renovation projects. With the changes imposed by the COVID-19 pandemic today, many non-essential industries have either shut down or had their operations significantly reduced. This means the need for a functioning detection system is more critical now than ever as many facilities remain idle or continue to operate with reduced personnel. Detecting fires quickly and accurately gives our first responders the best chance of saving a person or facility. Conversely, having any “detection system” is often not good enough. Nuisance alarms negatively consume first responder bandwidth, possibly removing an engine or fire company from a genuine event. Temporary fire detection In an article by The Boston Globe, Easthampton Fire Chief David Mottor, president of the Fire Chiefs Association of Massachusetts said “Ninety percent of these buildings go up every day and nothing happens. It’s during construction before the sprinkler system is activated when they are most dangerous.” Globally, we have seen four approaches to temporary detection for both construction and renovation sites. We will quickly discuss the advantages and disadvantages below: Using 24/7 fire watch Utilizing local first responders or other authorized/trained personnel to offer 24/7 fire watch requires a person or team of people to be onsite 24 hours a day, 7 days a week to be physically looking for fires. Advantage: Someone is always on site, actively viewing and patrolling the facility. Disadvantage: Maintaining a 24/7 fire watch can be expensive, further the person or team can only see/find fires in proximity to them as they continue to move about a facility. Using digital linear heat detection Digital linear heat detection is a fixed temperature detector that is constructed using a twisted pair of metal conductors that are separated by a heat sensitive polymer. When the ambient temperature meets or exceeds the detector’s fixed temperature the polymers melt, and the detector shorts out resulting in an alarm. Advantages: Detector can be easily installed at a new construction site or a facility being renovated. The technology is a low profile, non-intrusive and cost-effective form of detection. This automatic initiating device is immune to environmental conditions. Protectowire FireSystems offers Confirmed Temperature Initiation technology (mechanical damage does not cause a false alarm). Disadvantages: Detector can be mechanically damaged during normal worksite operation. If you are unsure, be sure to check with the local AHJ or call your insurance provider Using wireless spot detectors There are a few companies on the market that offer wireless spot detectors that can be networked together. Advantage: Typically, this technology uses a mesh network of detectors. The detectors and their bases are battery operated and can be moved or placed per worksite requirements. Disadvantage: This technology can be expensive. Physical barriers on the construction site may hinder mesh network operation requiring the purchase of additional wireless units. Many wireless technology providers focus on smoke detection. Smoke detectors are often not ideal for the harsh environments associated with construction (dust, temperature changes, etc.). Using a hybrid approach This involves using wireless nodes to supervise linear heat detection. Most manufacturers of the wireless systems offer a wireless node that can accept a third-party initiating device. Advantage: Wireless nodes can be placed anywhere, and linear heat detection technology can withstand the harsh construction environment. Disadvantage: Wireless node battery life can be reduced when using a third-party device. Less cost-effective approach. Solution for Facilities While each of the approaches listed above has its own advantages and disadvantages, you must always consider what is best for your facility. If you are unsure, be sure to check with the local AHJ or call your insurance provider. Established in 1938, Protectowire FireSystems is the global manufacturer of Linear Heat Detection Systems. The Company has been manufacturing in the United States for the past 80 years and counting. Protectowire is dedicated to delivering products designed, engineered, manufactured, and tested with a high degree of performance, reliability, and quality. As one of the manufacturers in the fire protection industry, Protectowire has the experience and knowledge needed to meet the ever-increasing detection challenges of the special hazard and commercial industries.

Safe As Houses: Using Technology To Reduce The Risk Of Fires
Safe As Houses: Using Technology To Reduce The Risk Of Fires

New government legislation due to come into force in the United Kingdom on July 1st will require electrical installations in privately rented properties to be tested and inspected at least once every 5 years. The Electrical Safety Standards in the Private Rented Sector Regulations (2020) will require landlords to enlist qualified electricians to complete inspections and provide certification to tenants – or face fines of up to £30,000. While the risk of fire can never be entirely eliminated, the new legislation will introduce higher levels of safety and ensure that one of the primary causes of fire – electrical malfunctions – is regularly tested for. There are a number of procedures and regulations in place for when a fire has already started, but this new law will help to reduce the chances of it getting to that point. After all, prevention is the best form of protection. No safety procedure or response plan will ever fully prepare someone for the reality of a fire. However, a comprehensive prevention strategy and use of the latest technologies to quickly detect and respond to a fire can at least reduce the potential risk to both life and property. Defensive detection A fire can spring from many sources. Current standards do a good job of ensuring properties are well equipped to defend against fires created by overcurrent caused by overloads and short circuits. A comprehensive prevention strategy and use of the latest technologies to quickly detect and respond to a fire can at least reduce potential risk However, electrical fires can also result from mistakes made during the installation process, namely loose cabling or aging circuits that will not be detected by overcurrent protection. Indeed, a defective or worn insulation is the cause of 14% of all electrical fires in buildings. The danger of landlords only performing the bare minimum to protect their buildings is that, should a fire start from a source they haven’t accounted for, the loss and disruption to property could be devastating. For maximum protection, individuals need reliable, innovative products that excel beyond the minimum standards to prevent a fire from starting in the first place. The pending legislation will add to this safety from the start. It will require landlords to use qualified electricians when installing, repairing and maintaining systems, benefitting both landlords and tenants by mitigating electrical issues and instilling greater confidence. Protection against insulation faults The risk of cable insulation faults grows over time and the consequences can be severe. Low-intensity arc faults are more likely to occur in humid, dusty environments, causing injury and deadly fires if precautions aren’t taken. Protection against insulation faults within cables can be assured by residual current devices (RCD), which are triggered by earth leakage currents exceeding 300mA. For maximum protection, individuals need reliable, innovative products that excel beyond the minimum standards to prevent a fire from starting Additionally, final circuits in critical locations (as recommended in IEC 60364), should be protected by an arc fault detection device (AFDD). This is a circuit breaker that automatically cuts off the electricity supply when it detects an arc fault in the circuit. By immediately stopping the supply, AFDDs stop arc faults from reaching temperatures where fires can break out. As well as ensuring that private tenants feel more safe and secure, the new legislation represents an opportunity for electricians to secure more work and develop their skills. Going forward, as the demand for electricians in the private rented sector rises, we expect to see greater opportunity for electrical engineers to win long running contracts with landlords and property managers. Fire may be a risk, but it is not unavoidable. This new legislation promises greater peace of mind for private tenants by ensuring that electrical standards are met and hazards reduced. With expert knowledge and the correct approach to electrical fire prevention, a fire can be extinguished before any damage is done.

Elevating Fire Alarm System Management To The Next Level With IoT Services
Elevating Fire Alarm System Management To The Next Level With IoT Services

Over the last decade, fire protection has been transformed by the rise of addressable, IP-based devices embedded in networked fire alarm system infrastructure. The scalability and modular architecture of digital fire alarm systems has unlocked a new level of fire safety, for instance by pinpointing the exact location of a triggered smoke detector in an alarm, or by interfacing with public address systems for phased building evacuations. For system integrators, installation and maintenance of alarm systems have reached new levels of efficiency – including automated service alerts and far fewer false alarms – with unprecedented cost savings. Accordingly, the world market for fire alarm systems has seen significant growth, driven by the digitization of existing systems to meet higher safety standards and legislation. Experts at Grand View Research expect the market to increase from $52.2 billion in 2016 to $93.5 billion by 2022. Addressable systems – including IP-networked smoke detectors and fire panels – already account for more than two-thirds of the alarm technologies segment. And, as analog systems are being phased out, their share will soon be 100 percent. Networked fire alarm systems With that said, all elements are in place for the second, even more fundamental transformation in fire protection: In the near future, a growing amount of networked fire alarm systems will be connected to the Internet of Things (IoT). In the near future, a growing amount of networked fire alarm systems will be connected to the IoTThis is part of a larger trend across industries, including smart homes and smart buildings automated by a mixture of sensor data and artificial intelligence (AI). The number of IoT-connected devices worldwide is expected to exceed 14 billion by 2022, more than half of the world’s 28.5 billion connected devices. For technology providers like Bosch, the IoT’s level of networked intelligence calls for a strategic response. “Our strategic target for all of our electronic product categories is to be IoT-enabled by 2020,” said Volkmar Denner, CEO of Bosch. This vision is supported by “3S’s” in Bosch’s connectivity business: sensors, software, and services. In developing and implementing services and solutions for the connected world, Bosch benefits from its expertise in software and sensor technology as well as, in particular, its broad business portfolio. Remote Services lead the way When it comes to bringing the IoT into the fire safety segment, Bosch envisions a future in which connected devices – and their data – open up new kinds of services that offer significant benefits to end customers and system integrators. This digital transformation journey is already well underway, as IoT-based applications are already enhancing the fire safety service offering on several levels. As a prerequisite, networked system architecture such as fire panels and sensors need to connect to the internet via nodes, hubs, and gateways in a secure manner. With this connection in place, the system can communicate with a cloud application server via IP protocol to send real-time data such as device health, battery status, and event history. Networked system architecture such as fire panels and sensors need to connect to the internet via nodes, hubs, and gateways in a secure manner Because system integrators can access these data points from any location without physically visiting the installation on-site, the impact of the IoT so far has been most pronounced in the Remote Services segment with the following three focus areas: Remote Connect. Allows for the remote set-up of a system and programming to customer specifications. Offers cost savings, as set-up can be handled practically without leaving the office for each new installation. Requests for changes can also be implemented at faster turnaround. Remote Alert. In case of fire, the system sends an alert via the remote portal, which can be integrated with messaging systems. Integrators also receive alerts for device outages and malfunctions. Remote Maintenance. The system performs regular health checks and condition monitoring, sent at user-specified intervals. Smart fire detectors also ping administrators for electromagnetic pollution or contamination with dust. Major efficiency gains for system integrators While IoT-based Remote Services already provide major efficiency gains for system integrators, we’re only just scratching the surface of what is possible. At the same time, the foundation for next-generation IoT-connected services is already created today, as the integration between sensors, software, and services increases.It will not only be crucial for devices to work together within the same network In the process of building end-to-end fire safety systems that are ready to connect with the IoT, seamless interfaces with third-party apps and platforms via APIs (Application Programming Interfaces) will be a competitive advantage for system technology providers. It will not only be crucial for devices to work together within the same network. It will be even more important that systems can communicate with apps or building management software. On the same note, the ability to provide integrated, IoT-connected services on a secure backbone – safe from hackers and malicious attacks – will be indispensable, because system data is the most valuable resource moving forward. Analyzed correctly, this data holds the key to what comes next.         Smart data instead of Big Data Needless to say, the rise of IoT-connected fire alarm systems will create massive amounts of data. This new ‘Big Data’ reality will call for improved data processing capabilities. Not just in terms of quantity: The most relevant services will be derived from smart data provided by IoT solutions in fire safety. The focus lies with data points that matter and making this data actionable by practice-oriented analysis. For a quick glimpse into the process, our IoT data scientists are currently running comparative analyses of several fire alarm systems to gain visibility on problematic incidents, for instance when devices trigger false alarms. New services will have the potential to transform the way in which fire alarm systems are maintainedIn the next step, categorizing all systems that report such incidents into clusters would allow to give system integrators a big picture overview pinpointing exactly those among their managed systems that are at risk and need inspection, repairs, or upgrades. On the technical level, Bosch is using Mongo DB, a universal, document-based database for apps, to perform these quantitative analyses, always with a focus on new services and benefits for customers. As our understanding of this data increases, new services will become possible that have the potential to transform the way in which fire alarm systems are maintained and managed. Whereas today, system integrators can view data points such as device status in their Remote Portal and offer basic maintenance support via cloud-connected apps, tomorrow their service approach will be much more proactive, again thanks to smart data. The next level of IoT-powered services In the future, data from IoT-connected systems can be leveraged to predict automatically at what exact point in time a system component is going to fail. Instead of replacing said component ahead of time, as is the case in today’s preventive maintenance approach, this new predictive service protocol allows to save cost by making maximum usage of the device’s lifespan.This new predictive service protocol allows to save cost by making maximum usage of the device’s lifespan In the bigger picture, the data log of a particular fire alarm installation’s data can provide the basis for targeted system optimization efforts. For instance, if long-term data indicates that sensors in a particular area tend to trigger false alarms because of signal interference, the integrators can perform a deep dive into whether nearby high-voltage cabling is the cause and make adjustments to system architecture accordingly. In the same vein, integrators gain transparency on whether detectors in a certain location tend to need replacement due to dust and contamination, or if electromagnetic compatibility (EMC) with other systems like voice broadcast is causing issues – and take preventative measures. Self-monitoring Fire alarm systems Overall, these data points, together with constant real-time information on system health, will provide system administrators with the tools for planning and maintaining fire alarm systems in a more efficient manner. They can design and install new systems based on the data-powered learnings from previous installations. And they can provide a more customer-centric response to information requests or inquiries for system updates. Most of all, the connection to IoT-based services will provide a new peace of mind: These upgraded fire alarm systems will quietly monitor and secure themselves, and only trigger alarms or notifications when service is needed, while system integrators can focus on more important tasks. Right now, we are building the foundation for making these new IoT-driven services a reality. But compared to what the IoT has is store for the future design of fire alarm systems in buildings, we have only seen the beginning. The biggest benefits are still to come.

Latest Detector Technologies Limited (D-Tec) news

Preventing Fire In The Oil And Gas Environment - A Timely Solution
Preventing Fire In The Oil And Gas Environment - A Timely Solution

The risks associated with fire in the petrochemical industry, whether it be on production platforms at sea or on shore at oil terminals and storage facilities, have been brought into sharp focus by a number of high profile incidents, resulting in tremendous damage to infrastructure and sadly, in some extreme cases, the large-scale loss of life. This has caused the industry to look at new approaches such as Video Smoke Detection (VSD) to protect key elements of their infrastructure and to ensure the safety of workers by providing early fire detection. Back in 1988, the devastation wrought by the world's worst offshore oil disaster on the Piper Alpha platform in the North Sea was a major shock and wake-up call to the sector. In this case, a gas leak resulted in blasts on the rig and sparked a major fire, which engulfed the structure - then the largest platform in the North Sea - leading to 167 fatalities. The world's worst offshore oil disaster on the Piper Alpha platform in the North Sea was a major shock and wake-up call  This traumatic event demonstrated all too clearly the hazardous nature of the oil and gas environment, and the serious repercussions that occur when problems are not detected early enough and a fire is allowed to take hold. Hazardous Oil And Gas Environments More recently - in December 2005 - we were again reminded of the ever-present danger, this time manifested in the biggest blaze seen in the UK since World War II, at Hertfordshire Oil Storage Terminal in Buncefield, near Hemel Hempstead. Prior to the fire, the terminal was handling 2.37 million metric tonnes of oil products annually. The problem at Buncefield resulted from the overflowing of unleaded petrol being pumped into a storage tank. A rich fuel and air vapour rapidly formed and spread across the site and set off a number of major explosions - heard for miles around - and an associated fire. This unprecedented incident took in 20 storage tanks and caused extensive damage to the site and adjacent business premises, and the evacuation of a significant area around the facility. So what measures can be taken to help minimise the fire hazards in this sort of environment and provide an early warning of fire, to protect key assets against the potential of a problem escalating into a full scale disaster, if left unchecked? The risks associated with fire in the petrochemical industry have been brought into sharp focus by a number of high profile incidents A technology based on the intelligent analysis of video surveillance images is being increasingly deployed to protect such valuable assets from fire. This solution is aptly referred to as Video Smoke Detection (VSD) - a technology pioneered by D-Tec - and is a capability that is now operational in a wide range of sites worldwide. Typical projects, across the petrochemicals industry, include for example using video smoke detection to protect the generator rooms on North Sea rigs. These assets are essential to the smooth and ongoing operation of the multi-million pound platforms and are particularly challenging installations, as they are prone to heavy vibration and atmospheric contamination. Another application is the monitoring of a huge on-shore oil terminal connected to oil-fields. Benefits Of Video Smoke Detection Typical projects, across the petrochemicals industry, include using video smoke detection to protect the generator rooms on North Sea rigs The beauty of VSD is that it takes detection to the fire rather than waiting for the fire to come to the detector. This approach is ideally suited to the large, extensive nature of oil terminals and platforms where it is just not practical to cost-effectively place conventional detectors close enough to the area of risk to provide the required level of fire detection. In extensive structures or sites covering a large geographic area, there is a high reliance - as far as traditional fire detection solutions are concerned - of smoke overcoming distance before being detected. This can mean that with conventional detectors, it can be many minutes before a fire alarm is activated - if at all - making it much more problematic to tackle a blaze, as it is likely to have reached a more advanced stage. Given the speed that fires can grow in such a combustible environment, early smoke detection is even more critical for the oil and gas industry. Thankfully, distance is not a limitation faced by Video Smoke Detection (VSD), as this technology is able to utilize images from standard video surveillance cameras and analyze these, by applying sophisticated algorithms to detect smoke. By programming the software to look for anticipated motion patterns of smoke over a specified area within the range of a camera image, and looking for pixel changes, VSD has the potential to deliver an exceptionally fast response - typically in seconds. Crucially, once smoke has been detected, the system can alert the operator as well as deliver a visual representation of the smoke on the system's monitor. Consequently, VSD is not reliant on the proximity of smoke to a detector; whether the camera is 10 or 100 metres away from a risk area, VSD will detect smoke in the same amount of time. Although it is claimed that other camera-based systems are able to detect smoke, the reality is that these are really motion detectors or obscuration-change detectors which are unable to differentiate between smoke and other sources of movement and hence are prone to false smoke alarms. In terms of practicality, the cameras associated with VSD can be fixed in conveniently accessible places, rather than being positioned well out of reach, as is the case with conventional detectors. Additionally, as video surveillance can cover a much larger area, fewer cameras would be required, compared to smoke detectors, for a given size of oil platform. It may also be possible to take advantage of already installed security cameras for some of the monitoring. VSD has the potential to deliver an exceptionally fast response by tracking smoke motion patterns IP Enhances Visual Smoke Detection Capabilities VSD's capabilities have been further enhanced by the potential for camera images and alarms to be distributed, for review, over a network to a number of viewing locations. This is being realized through solutions that readily integrate the well-recognized advantages of VSD with IP (Internet Protocol) based functionality. In practice, this advance means that, for ease of management, it is perfectly possible for a number of geographically dispersed oil rigs to be monitored from the same control room, and more to be added should the need arise. This can also be invaluable for unmanned platforms where, should an alarm be activated; the remote operator actually has a visual indication of what is going on. It is perfectly possible for a number of geographically dispersed oil rigs to be monitored from the same control room As a consequence, an operator can make an informed decision there and then as to whether a firefighting team needs to be sent to the platform. This is in contrast to more conventional smoke alarm systems, which just sound an alarm without the possibility of ascertaining the severity of an incident without automatically paying a visit - a costly process. There is also the ability, with this flexible approach to VSD, for changes to configuration, testing and diagnosis to be carried out remotely - reducing cost and minimizing delay. Integrating Smoke And Flame Detection Another big leap forward with VSD is the potential, for the first time, to combine smoke and flame detection. This is ideal for more hazardous situations, such as those thrown up by the petrochemical industry. A key benefit of the application of an advanced flame detection algorithm - in addition to smoke detection - is that it is now perfectly possible to deliver a layered response, typically alarming on smoke first and then confirming again if fire appears. There is also the potential for the application of this capability in designated areas at night where flame rather than smoke is likely to be the most visible sign of an incident. Fast Track Detection For Effective Fire Protection The message to fire and safety professionals concerned with the petrochemical industry is this: Now is the right time to look again at Video Smoke Detection (VSD) for key projects, whether it be an oil refinery on land or a production platform at sea. Ultimately, the effectiveness and ease of installation of VSD, particularly in the shape of the networkable and dual smoke and flame detection capabilities, makes a compelling case for adopting this technology, where conventional approaches are simply not going to provide the early warning necessary to minimise the very real risks associated with fire.  

D-Tec’s FireVu Video Smoke Detection Systems Deployed At King Khalid International Airport's Royal Maintenance Complex
D-Tec’s FireVu Video Smoke Detection Systems Deployed At King Khalid International Airport's Royal Maintenance Complex

D-Tec's FireVu detection systems will detect any possible occurences of fire inside the hangar saving both life and property D-Tec provides Royal Maintenance hangars with fast and reliable video smoke detection systems. Networkable CCTV-based FireVu VSD (Video Smoke Detection) systems from D-Tec part of AD Group have been supplied and commissioned by BSS-ME, its partner in the Middle East, for five large (90 m (L) x 90m (H) x 33 m (W)) hangars at the Royal Maintenance complex at King Khalid International Airport 35 kilometres north of Riyadh, Saudi Arabia. This application further extends the growing installation base of VSD in the Middle East region. In terms of the final installation the CCTV-based Video Smoke Detection solution adopted for the Royal Maintenance complex consists of eight cameras carefully positioned around each hangar with these in turn connected to two four channel FireVu systems, giving a total of 40 cameras and 10 FireVu units across the project. With regards to the actual selection process for D-Tec's Video Smoke Detection (VSD) at the Riyadh Airport project, according to Malcolm Gatenby, Sales Director at BSS-ME, it came into the picture at a relatively late stage: "Initially linear heat detection had been specified in the open roof void of the new hangars as the primary means of fire detection, however this decision changed in preference to the faster and potentially more reliable CCTV-based FireVu VSD system solution following a presentation by BSS-ME to the client, specialist fire and security contractor - Modern Building Est.(Riyadh), and the main contractor, Saudi Oger." The decision to discard linear heat detection and ultimately move to Video Smoke Detection was driven, in part, by the significant installation savings which BSS-ME was able to demonstrate around 35% less than the original solution (if all the installation and fixing of linear cables is included). Crucially, by using the CCTV cameras specified for the project and being able to link-in to the IT network the VSD solution did not require extensive additional works or cabling. D-Tec's VSD systems were deployed at 5 hangars at the Royal Maintenance complex at King Khalid International Airport Another key advantage, highlighted by BSS-ME, was the proven speed of response offered by VSD which makes it so attractive for voluminous aircraft hangar projects. The detection of smoke at source which D-Tec's FireVu offers by applying sophisticated algorithms to CCTV images, so whether the camera is 10 or 100 metres away time to alarm is the same, is especially critical in a hangar given the high value of the aircraft that are maintained there. Commented Malcolm Gatenby: "In the case of Riyadh the large-scale hangars are designed to be able to house aircraft as large as the Boeing 747. The drawback with a linear heat cable being used in this case is that, realistically, temperatures would have to reach 75 degrees Centigrade on the roof before an alarm would be raised which, with factors such as stratification and temperature layering, can be minutes rather than seconds, with the consequences which flow from this in terms of whether an incident can be tackled before a fire has the chance to take hold. As a result, there were real concerns that if the project had moved forward with linear heat cables, in the event of fire, serious damage could,potentially, be caused to the parked aircraft by the time either the smoke or heat reached the detectors." Construction of the five new hangars at Riyadh started in June 2009 and was completed in April 2010. The commissioning and testing of the FireVu systems took place over a four-day period to ensure that the camera views in each hangar were optimised for the Video Smoke Detection's operation leaving no critical gaps in coverage - and training was also provided by BSS-ME for the client's personnel who would ultimately be controlling the user-friendly system. The smoke testing proved to be extremely successful and all the parties involved were impressed with the speed of response, typically in under 10 seconds, which was in line with expectations and the fact that no false alarms were generated by D-Tec's FireVu system. Undoubtedly, the number of VSD reference sites which now exist across the Middle East also helped to persuade the client to change to FireVu. Said Malcolm Gatenby: "From a BSS-ME perspective we have now provided D-Tec's VSD solutions for a number of landmark projects in the region, including the world's largest privately-owned aircraft hangar the massive Royal Airwing Hangar complex at the Dubai International Airport in UAE and the Royal Hangar at Seeb International Airport, Oman." "In addition to the project at the Royal Maintenance complex at Riyadh, which has now been commissioned, FireVu Video Smoke Detection from D-Tec will soon be operational in a further three hangars in Saudi Arabia, this time at Jeddah Airport." 

Iconic Landmark Protected By Video Smoke Detection Technology
Iconic Landmark Protected By Video Smoke Detection Technology

CCTV video smoke detection has been developed with new enhancements by D-Tec  Hilson Moran Partnership enquiries led to D-Tec, the inventors and developers of the CCTV Video Smoke Detection (VSD) technology. The new headquarters for Swiss Re's UK operations in the City of London is a remarkable building rising to 180m the 40-storey structure, incorporating advanced methods of planning, design and construction. One unique design feature is the six lightwells on every floor spiralling at 5-degree angles from the floor above down the building. As the lightwells form a natural source of ventilation throughout the structure it was imperative that an early form of smoke detection was applied to these areas as smoke would most certainly travel through these areas in the event of fire. Hilson Moran Partnership (HMP), the Building Services Consulting Engineer, was charged with the responsibility to find the most efficient fire detection system to protect these areas. The use of systems involving conventional smoke detectors such as beam detectors or aspirated smoke detection systems were all considered and discounted for different reasons. Also, the Architect wanted to keep the areas as 'clutter free' as possible so as to retain the aesthetic features of the lightwells. HMP's enquiries led to D-Tec, the inventors and developers of the CCTV Video Smoke Detection (VSD) technology. Demonstrations of the technology were arranged so that the Client Swiss Re, The Architects, The District Surveyor and the Main Contractor. The demonstration was carried out in the new Swiss Re Tower where a 30 second burn smoke pellet was ignited on the fourth floor and a camera set up on the ninth floor. Upon ignition the system picked up the smoke within thirty seconds. Several tests were made and all gave similar detection rates. One of the key issues identified during testing was that the smoke did not follow the same flow patterns as the testing progressed. This was good news for the VSD System as it does not rely on smoke reaching a specific point so it can detect the smoke no matter what the airflow direction. D-Tec delivers smoke detection with minimum amount of disruption It was agreed that a six-camera system would protect the light wells, the same technology would also be applied in the main lobby where the existing security cameras would be used also for fire protection. The lobby height was 6.5 m and again the Architects specified the minimum of services' clutter. By running D-Tec software on 6 of the security cameras, smoke detection was achieved with the minimum of disruption. The installation was carried out in phases to fit in with the main construction schedule. In essence the system was integrated with the security CCTV System, the main Fire Panel and the Building Management System. The District Surveyor was very impressed with the technology and believes that many other buildings will benefit from using the VSD Technology, especially when large atriums are becoming more popular with designers, coupled with the fact that the same CCTV security cameras can be used as fire detectors means that the system becomes a cost effective viable solution. 

vfd